Metamath Proof Explorer


Theorem psr0

Description: The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s S = I mPwSer R
psrgrp.i φ I V
psrgrp.r φ R Grp
psr0.d D = f 0 I | f -1 Fin
psr0.o O = 0 R
psr0.z 0 ˙ = 0 S
Assertion psr0 φ 0 ˙ = D × O

Proof

Step Hyp Ref Expression
1 psrgrp.s S = I mPwSer R
2 psrgrp.i φ I V
3 psrgrp.r φ R Grp
4 psr0.d D = f 0 I | f -1 Fin
5 psr0.o O = 0 R
6 psr0.z 0 ˙ = 0 S
7 eqid Base S = Base S
8 eqid + S = + S
9 1 2 3 4 5 7 psr0cl φ D × O Base S
10 1 2 3 4 5 7 8 9 psr0lid φ D × O + S D × O = D × O
11 1 2 3 psrgrp φ S Grp
12 7 8 6 grpid S Grp D × O Base S D × O + S D × O = D × O 0 ˙ = D × O
13 11 9 12 syl2anc φ D × O + S D × O = D × O 0 ˙ = D × O
14 10 13 mpbid φ 0 ˙ = D × O