Metamath Proof Explorer


Theorem psr0cl

Description: The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s S = I mPwSer R
psrgrp.i φ I V
psrgrp.r φ R Grp
psr0cl.d D = f 0 I | f -1 Fin
psr0cl.o 0 ˙ = 0 R
psr0cl.b B = Base S
Assertion psr0cl φ D × 0 ˙ B

Proof

Step Hyp Ref Expression
1 psrgrp.s S = I mPwSer R
2 psrgrp.i φ I V
3 psrgrp.r φ R Grp
4 psr0cl.d D = f 0 I | f -1 Fin
5 psr0cl.o 0 ˙ = 0 R
6 psr0cl.b B = Base S
7 eqid Base R = Base R
8 7 5 grpidcl R Grp 0 ˙ Base R
9 fconst6g 0 ˙ Base R D × 0 ˙ : D Base R
10 3 8 9 3syl φ D × 0 ˙ : D Base R
11 fvex Base R V
12 ovex 0 I V
13 4 12 rabex2 D V
14 11 13 elmap D × 0 ˙ Base R D D × 0 ˙ : D Base R
15 10 14 sylibr φ D × 0 ˙ Base R D
16 1 7 4 6 2 psrbas φ B = Base R D
17 15 16 eleqtrrd φ D × 0 ˙ B