Metamath Proof Explorer


Theorem psr0lid

Description: The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s S = I mPwSer R
psrgrp.i φ I V
psrgrp.r φ R Grp
psr0cl.d D = f 0 I | f -1 Fin
psr0cl.o 0 ˙ = 0 R
psr0cl.b B = Base S
psr0lid.p + ˙ = + S
psr0lid.x φ X B
Assertion psr0lid φ D × 0 ˙ + ˙ X = X

Proof

Step Hyp Ref Expression
1 psrgrp.s S = I mPwSer R
2 psrgrp.i φ I V
3 psrgrp.r φ R Grp
4 psr0cl.d D = f 0 I | f -1 Fin
5 psr0cl.o 0 ˙ = 0 R
6 psr0cl.b B = Base S
7 psr0lid.p + ˙ = + S
8 psr0lid.x φ X B
9 eqid + R = + R
10 1 2 3 4 5 6 psr0cl φ D × 0 ˙ B
11 1 6 9 7 10 8 psradd φ D × 0 ˙ + ˙ X = D × 0 ˙ + R f X
12 ovex 0 I V
13 4 12 rabex2 D V
14 13 a1i φ D V
15 eqid Base R = Base R
16 1 15 4 6 8 psrelbas φ X : D Base R
17 5 fvexi 0 ˙ V
18 17 a1i φ 0 ˙ V
19 15 9 5 grplid R Grp x Base R 0 ˙ + R x = x
20 3 19 sylan φ x Base R 0 ˙ + R x = x
21 14 16 18 20 caofid0l φ D × 0 ˙ + R f X = X
22 11 21 eqtrd φ D × 0 ˙ + ˙ X = X