Metamath Proof Explorer


Theorem psr1

Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses psrring.s S = I mPwSer R
psrring.i φ I V
psrring.r φ R Ring
psr1.d D = f 0 I | f -1 Fin
psr1.z 0 ˙ = 0 R
psr1.o 1 ˙ = 1 R
psr1.u U = 1 S
Assertion psr1 φ U = x D if x = I × 0 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 psrring.s S = I mPwSer R
2 psrring.i φ I V
3 psrring.r φ R Ring
4 psr1.d D = f 0 I | f -1 Fin
5 psr1.z 0 ˙ = 0 R
6 psr1.o 1 ˙ = 1 R
7 psr1.u U = 1 S
8 eqid x D if x = I × 0 1 ˙ 0 ˙ = x D if x = I × 0 1 ˙ 0 ˙
9 eqid Base S = Base S
10 1 2 3 4 5 6 8 9 psr1cl φ x D if x = I × 0 1 ˙ 0 ˙ Base S
11 2 adantr φ y Base S I V
12 3 adantr φ y Base S R Ring
13 eqid S = S
14 simpr φ y Base S y Base S
15 1 11 12 4 5 6 8 9 13 14 psrlidm φ y Base S x D if x = I × 0 1 ˙ 0 ˙ S y = y
16 1 11 12 4 5 6 8 9 13 14 psrridm φ y Base S y S x D if x = I × 0 1 ˙ 0 ˙ = y
17 15 16 jca φ y Base S x D if x = I × 0 1 ˙ 0 ˙ S y = y y S x D if x = I × 0 1 ˙ 0 ˙ = y
18 17 ralrimiva φ y Base S x D if x = I × 0 1 ˙ 0 ˙ S y = y y S x D if x = I × 0 1 ˙ 0 ˙ = y
19 1 2 3 psrring φ S Ring
20 9 13 7 isringid S Ring x D if x = I × 0 1 ˙ 0 ˙ Base S y Base S x D if x = I × 0 1 ˙ 0 ˙ S y = y y S x D if x = I × 0 1 ˙ 0 ˙ = y U = x D if x = I × 0 1 ˙ 0 ˙
21 19 20 syl φ x D if x = I × 0 1 ˙ 0 ˙ Base S y Base S x D if x = I × 0 1 ˙ 0 ˙ S y = y y S x D if x = I × 0 1 ˙ 0 ˙ = y U = x D if x = I × 0 1 ˙ 0 ˙
22 10 18 21 mpbi2and φ U = x D if x = I × 0 1 ˙ 0 ˙