Metamath Proof Explorer


Theorem psr1cl

Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrring.s S = I mPwSer R
psrring.i φ I V
psrring.r φ R Ring
psr1cl.d D = f 0 I | f -1 Fin
psr1cl.z 0 ˙ = 0 R
psr1cl.o 1 ˙ = 1 R
psr1cl.u U = x D if x = I × 0 1 ˙ 0 ˙
psr1cl.b B = Base S
Assertion psr1cl φ U B

Proof

Step Hyp Ref Expression
1 psrring.s S = I mPwSer R
2 psrring.i φ I V
3 psrring.r φ R Ring
4 psr1cl.d D = f 0 I | f -1 Fin
5 psr1cl.z 0 ˙ = 0 R
6 psr1cl.o 1 ˙ = 1 R
7 psr1cl.u U = x D if x = I × 0 1 ˙ 0 ˙
8 psr1cl.b B = Base S
9 eqid Base R = Base R
10 9 6 ringidcl R Ring 1 ˙ Base R
11 9 5 ring0cl R Ring 0 ˙ Base R
12 10 11 ifcld R Ring if x = I × 0 1 ˙ 0 ˙ Base R
13 3 12 syl φ if x = I × 0 1 ˙ 0 ˙ Base R
14 13 adantr φ x D if x = I × 0 1 ˙ 0 ˙ Base R
15 14 7 fmptd φ U : D Base R
16 fvex Base R V
17 ovex 0 I V
18 4 17 rabex2 D V
19 16 18 elmap U Base R D U : D Base R
20 15 19 sylibr φ U Base R D
21 1 9 4 8 2 psrbas φ B = Base R D
22 20 21 eleqtrrd φ U B