Metamath Proof Explorer


Theorem psr1lmod

Description: Univariate power series form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypothesis psr1lmod.p P = PwSer 1 R
Assertion psr1lmod R Ring P LMod

Proof

Step Hyp Ref Expression
1 psr1lmod.p P = PwSer 1 R
2 1 psr1val P = 1 𝑜 ordPwSer R
3 1on 1 𝑜 On
4 3 a1i R Ring 1 𝑜 On
5 id R Ring R Ring
6 0ss 1 𝑜 × 1 𝑜
7 6 a1i R Ring 1 𝑜 × 1 𝑜
8 2 4 5 7 opsrlmod R Ring P LMod