Metamath Proof Explorer


Theorem psr1plusg

Description: Value of addition in a univariate power series ring. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses psr1plusg.y Y = PwSer 1 R
psr1plusg.s S = 1 𝑜 mPwSer R
psr1plusg.p + ˙ = + Y
Assertion psr1plusg + ˙ = + S

Proof

Step Hyp Ref Expression
1 psr1plusg.y Y = PwSer 1 R
2 psr1plusg.s S = 1 𝑜 mPwSer R
3 psr1plusg.p + ˙ = + Y
4 1 psr1val Y = 1 𝑜 ordPwSer R
5 0ss 1 𝑜 × 1 𝑜
6 5 a1i 1 𝑜 × 1 𝑜
7 2 4 6 opsrplusg + S = + Y
8 7 mptru + S = + Y
9 3 8 eqtr4i + ˙ = + S