Metamath Proof Explorer


Theorem psr1tos

Description: The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 2-Jun-2015)

Ref Expression
Hypothesis psr1val.1 S = PwSer 1 R
Assertion psr1tos R Toset S Toset

Proof

Step Hyp Ref Expression
1 psr1val.1 S = PwSer 1 R
2 1 psr1val S = 1 𝑜 ordPwSer R
3 1on 1 𝑜 On
4 3 a1i R Toset 1 𝑜 On
5 id R Toset R Toset
6 0ss 1 𝑜 × 1 𝑜
7 6 a1i R Toset 1 𝑜 × 1 𝑜
8 0we1 We 1 𝑜
9 8 a1i R Toset We 1 𝑜
10 2 4 5 7 9 opsrtos R Toset S Toset