Metamath Proof Explorer


Theorem psr1val

Description: Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypothesis psr1val.1 S = PwSer 1 R
Assertion psr1val S = 1 𝑜 ordPwSer R

Proof

Step Hyp Ref Expression
1 psr1val.1 S = PwSer 1 R
2 oveq2 r = R 1 𝑜 ordPwSer r = 1 𝑜 ordPwSer R
3 2 fveq1d r = R 1 𝑜 ordPwSer r = 1 𝑜 ordPwSer R
4 df-psr1 PwSer 1 = r V 1 𝑜 ordPwSer r
5 fvex 1 𝑜 ordPwSer R V
6 3 4 5 fvmpt R V PwSer 1 R = 1 𝑜 ordPwSer R
7 0fv =
8 7 eqcomi =
9 fvprc ¬ R V PwSer 1 R =
10 reldmopsr Rel dom ordPwSer
11 10 ovprc2 ¬ R V 1 𝑜 ordPwSer R =
12 11 fveq1d ¬ R V 1 𝑜 ordPwSer R =
13 8 9 12 3eqtr4a ¬ R V PwSer 1 R = 1 𝑜 ordPwSer R
14 6 13 pm2.61i PwSer 1 R = 1 𝑜 ordPwSer R
15 1 14 eqtri S = 1 𝑜 ordPwSer R