Metamath Proof Explorer


Theorem psradd

Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses psrplusg.s S = I mPwSer R
psrplusg.b B = Base S
psrplusg.a + ˙ = + R
psrplusg.p ˙ = + S
psradd.x φ X B
psradd.y φ Y B
Assertion psradd φ X ˙ Y = X + ˙ f Y

Proof

Step Hyp Ref Expression
1 psrplusg.s S = I mPwSer R
2 psrplusg.b B = Base S
3 psrplusg.a + ˙ = + R
4 psrplusg.p ˙ = + S
5 psradd.x φ X B
6 psradd.y φ Y B
7 1 2 3 4 psrplusg ˙ = f + ˙ B × B
8 7 oveqi X ˙ Y = X f + ˙ B × B Y
9 5 6 ofmresval φ X f + ˙ B × B Y = X + ˙ f Y
10 8 9 eqtrid φ X ˙ Y = X + ˙ f Y