Metamath Proof Explorer


Theorem psraddclOLD

Description: Obsolete version of psraddcl as of 12-Apr-2025. (Contributed by Mario Carneiro, 28-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses psraddclOLD.s S = I mPwSer R
psraddclOLD.b B = Base S
psraddclOLD.p + ˙ = + S
psraddclOLD.r φ R Grp
psraddclOLD.x φ X B
psraddclOLD.y φ Y B
Assertion psraddclOLD φ X + ˙ Y B

Proof

Step Hyp Ref Expression
1 psraddclOLD.s S = I mPwSer R
2 psraddclOLD.b B = Base S
3 psraddclOLD.p + ˙ = + S
4 psraddclOLD.r φ R Grp
5 psraddclOLD.x φ X B
6 psraddclOLD.y φ Y B
7 eqid Base R = Base R
8 eqid + R = + R
9 7 8 grpcl R Grp x Base R y Base R x + R y Base R
10 9 3expb R Grp x Base R y Base R x + R y Base R
11 4 10 sylan φ x Base R y Base R x + R y Base R
12 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
13 1 7 12 2 5 psrelbas φ X : f 0 I | f -1 Fin Base R
14 1 7 12 2 6 psrelbas φ Y : f 0 I | f -1 Fin Base R
15 ovex 0 I V
16 15 rabex f 0 I | f -1 Fin V
17 16 a1i φ f 0 I | f -1 Fin V
18 inidm f 0 I | f -1 Fin f 0 I | f -1 Fin = f 0 I | f -1 Fin
19 11 13 14 17 17 18 off φ X + R f Y : f 0 I | f -1 Fin Base R
20 fvex Base R V
21 20 16 elmap X + R f Y Base R f 0 I | f -1 Fin X + R f Y : f 0 I | f -1 Fin Base R
22 19 21 sylibr φ X + R f Y Base R f 0 I | f -1 Fin
23 1 2 8 3 5 6 psradd φ X + ˙ Y = X + R f Y
24 reldmpsr Rel dom mPwSer
25 24 1 2 elbasov X B I V R V
26 5 25 syl φ I V R V
27 26 simpld φ I V
28 1 7 12 2 27 psrbas φ B = Base R f 0 I | f -1 Fin
29 22 23 28 3eltr4d φ X + ˙ Y B