Metamath Proof Explorer


Theorem psrascl

Description: Value of the scalar injection into the power series algebra. (Contributed by SN, 18-May-2025)

Ref Expression
Hypotheses psrascl.s S = I mPwSer R
psrascl.d D = f 0 I | f -1 Fin
psrascl.z 0 ˙ = 0 R
psrascl.k K = Base R
psrascl.a A = algSc S
psrascl.i φ I V
psrascl.r φ R Ring
psrascl.x φ X K
Assertion psrascl φ A X = y D if y = I × 0 X 0 ˙

Proof

Step Hyp Ref Expression
1 psrascl.s S = I mPwSer R
2 psrascl.d D = f 0 I | f -1 Fin
3 psrascl.z 0 ˙ = 0 R
4 psrascl.k K = Base R
5 psrascl.a A = algSc S
6 psrascl.i φ I V
7 psrascl.r φ R Ring
8 psrascl.x φ X K
9 1 6 7 psrsca φ R = Scalar S
10 9 fveq2d φ Base R = Base Scalar S
11 4 10 eqtrid φ K = Base Scalar S
12 8 11 eleqtrd φ X Base Scalar S
13 eqid Scalar S = Scalar S
14 eqid Base Scalar S = Base Scalar S
15 eqid S = S
16 eqid 1 S = 1 S
17 5 13 14 15 16 asclval X Base Scalar S A X = X S 1 S
18 12 17 syl φ A X = X S 1 S
19 eqid Base S = Base S
20 eqid R = R
21 1 6 7 psrring φ S Ring
22 19 16 ringidcl S Ring 1 S Base S
23 21 22 syl φ 1 S Base S
24 1 15 4 19 20 2 8 23 psrvsca φ X S 1 S = D × X R f 1 S
25 fnconstg X K D × X Fn D
26 8 25 syl φ D × X Fn D
27 1 4 2 19 23 psrelbas φ 1 S : D K
28 27 ffnd φ 1 S Fn D
29 ovexd φ 0 I V
30 2 29 rabexd φ D V
31 inidm D D = D
32 fvconst2g X K y D D × X y = X
33 8 32 sylan φ y D D × X y = X
34 eqid 1 R = 1 R
35 1 6 7 2 3 34 16 psr1 φ 1 S = d D if d = I × 0 1 R 0 ˙
36 35 adantr φ y D 1 S = d D if d = I × 0 1 R 0 ˙
37 36 fveq1d φ y D 1 S y = d D if d = I × 0 1 R 0 ˙ y
38 eqeq1 d = y d = I × 0 y = I × 0
39 38 ifbid d = y if d = I × 0 1 R 0 ˙ = if y = I × 0 1 R 0 ˙
40 eqid d D if d = I × 0 1 R 0 ˙ = d D if d = I × 0 1 R 0 ˙
41 fvex 1 R V
42 3 fvexi 0 ˙ V
43 41 42 ifex if y = I × 0 1 R 0 ˙ V
44 39 40 43 fvmpt y D d D if d = I × 0 1 R 0 ˙ y = if y = I × 0 1 R 0 ˙
45 44 adantl φ y D d D if d = I × 0 1 R 0 ˙ y = if y = I × 0 1 R 0 ˙
46 37 45 eqtrd φ y D 1 S y = if y = I × 0 1 R 0 ˙
47 26 28 30 30 31 33 46 offval φ D × X R f 1 S = y D X R if y = I × 0 1 R 0 ˙
48 ovif2 X R if y = I × 0 1 R 0 ˙ = if y = I × 0 X R 1 R X R 0 ˙
49 4 20 34 7 8 ringridmd φ X R 1 R = X
50 4 20 3 7 8 ringrzd φ X R 0 ˙ = 0 ˙
51 49 50 ifeq12d φ if y = I × 0 X R 1 R X R 0 ˙ = if y = I × 0 X 0 ˙
52 48 51 eqtrid φ X R if y = I × 0 1 R 0 ˙ = if y = I × 0 X 0 ˙
53 52 mpteq2dv φ y D X R if y = I × 0 1 R 0 ˙ = y D if y = I × 0 X 0 ˙
54 47 53 eqtrd φ D × X R f 1 S = y D if y = I × 0 X 0 ˙
55 18 24 54 3eqtrd φ A X = y D if y = I × 0 X 0 ˙