Metamath Proof Explorer


Theorem psrasclcl

Description: A scalar is lifted into a member of the power series. (Contributed by SN, 25-Apr-2025)

Ref Expression
Hypotheses psrasclcl.s S = I mPwSer R
psrasclcl.b B = Base S
psrasclcl.k K = Base R
psrasclcl.a A = algSc S
psrasclcl.i φ I W
psrasclcl.r φ R Ring
psrasclcl.c φ C K
Assertion psrasclcl φ A C B

Proof

Step Hyp Ref Expression
1 psrasclcl.s S = I mPwSer R
2 psrasclcl.b B = Base S
3 psrasclcl.k K = Base R
4 psrasclcl.a A = algSc S
5 psrasclcl.i φ I W
6 psrasclcl.r φ R Ring
7 psrasclcl.c φ C K
8 eqid Scalar S = Scalar S
9 1 5 6 psrring φ S Ring
10 1 5 6 psrlmod φ S LMod
11 eqid Base Scalar S = Base Scalar S
12 4 8 9 10 11 2 asclf φ A : Base Scalar S B
13 1 5 6 psrsca φ R = Scalar S
14 13 fveq2d φ Base R = Base Scalar S
15 3 14 eqtrid φ K = Base Scalar S
16 15 feq2d φ A : K B A : Base Scalar S B
17 12 16 mpbird φ A : K B
18 17 7 ffvelcdmd φ A C B