Metamath Proof Explorer


Theorem psrasclcl

Description: A scalar is lifted into a member of the power series. (Contributed by SN, 25-Apr-2025)

Ref Expression
Hypotheses psrasclcl.s S=ImPwSerR
psrasclcl.b B=BaseS
psrasclcl.k K=BaseR
psrasclcl.a A=algScS
psrasclcl.i φIW
psrasclcl.r φRRing
psrasclcl.c φCK
Assertion psrasclcl φACB

Proof

Step Hyp Ref Expression
1 psrasclcl.s S=ImPwSerR
2 psrasclcl.b B=BaseS
3 psrasclcl.k K=BaseR
4 psrasclcl.a A=algScS
5 psrasclcl.i φIW
6 psrasclcl.r φRRing
7 psrasclcl.c φCK
8 eqid ScalarS=ScalarS
9 1 5 6 psrring φSRing
10 1 5 6 psrlmod φSLMod
11 eqid BaseScalarS=BaseScalarS
12 4 8 9 10 11 2 asclf φA:BaseScalarSB
13 1 5 6 psrsca φR=ScalarS
14 13 fveq2d φBaseR=BaseScalarS
15 3 14 eqtrid φK=BaseScalarS
16 15 feq2d φA:KBA:BaseScalarSB
17 12 16 mpbird φA:KB
18 17 7 ffvelcdmd φACB