Metamath Proof Explorer


Theorem psrass1

Description: Associative identity for the ring of power series. (Contributed by Mario Carneiro, 5-Jan-2015)

Ref Expression
Hypotheses psrring.s S = I mPwSer R
psrring.i φ I V
psrring.r φ R Ring
psrass.d D = f 0 I | f -1 Fin
psrass.t × ˙ = S
psrass.b B = Base S
psrass.x φ X B
psrass.y φ Y B
psrass.z φ Z B
Assertion psrass1 φ X × ˙ Y × ˙ Z = X × ˙ Y × ˙ Z

Proof

Step Hyp Ref Expression
1 psrring.s S = I mPwSer R
2 psrring.i φ I V
3 psrring.r φ R Ring
4 psrass.d D = f 0 I | f -1 Fin
5 psrass.t × ˙ = S
6 psrass.b B = Base S
7 psrass.x φ X B
8 psrass.y φ Y B
9 psrass.z φ Z B
10 eqid Base R = Base R
11 1 6 5 3 7 8 psrmulcl φ X × ˙ Y B
12 1 6 5 3 11 9 psrmulcl φ X × ˙ Y × ˙ Z B
13 1 10 4 6 12 psrelbas φ X × ˙ Y × ˙ Z : D Base R
14 13 ffnd φ X × ˙ Y × ˙ Z Fn D
15 1 6 5 3 8 9 psrmulcl φ Y × ˙ Z B
16 1 6 5 3 7 15 psrmulcl φ X × ˙ Y × ˙ Z B
17 1 10 4 6 16 psrelbas φ X × ˙ Y × ˙ Z : D Base R
18 17 ffnd φ X × ˙ Y × ˙ Z Fn D
19 eqid g D | g f x = g D | g f x
20 simpr φ x D x D
21 3 ringcmnd φ R CMnd
22 21 adantr φ x D R CMnd
23 eqid R = R
24 3 ad3antrrr φ x D j g D | g f x n h D | h f x f j R Ring
25 1 10 4 6 7 psrelbas φ X : D Base R
26 25 ad2antrr φ x D j g D | g f x X : D Base R
27 simpr φ x D j g D | g f x j g D | g f x
28 breq1 g = j g f x j f x
29 28 elrab j g D | g f x j D j f x
30 27 29 sylib φ x D j g D | g f x j D j f x
31 30 simpld φ x D j g D | g f x j D
32 26 31 ffvelcdmd φ x D j g D | g f x X j Base R
33 32 adantr φ x D j g D | g f x n h D | h f x f j X j Base R
34 1 10 4 6 8 psrelbas φ Y : D Base R
35 34 ad3antrrr φ x D j g D | g f x n h D | h f x f j Y : D Base R
36 simpr φ x D j g D | g f x n h D | h f x f j n h D | h f x f j
37 breq1 h = n h f x f j n f x f j
38 37 elrab n h D | h f x f j n D n f x f j
39 36 38 sylib φ x D j g D | g f x n h D | h f x f j n D n f x f j
40 39 simpld φ x D j g D | g f x n h D | h f x f j n D
41 35 40 ffvelcdmd φ x D j g D | g f x n h D | h f x f j Y n Base R
42 1 10 4 6 9 psrelbas φ Z : D Base R
43 42 ad3antrrr φ x D j g D | g f x n h D | h f x f j Z : D Base R
44 simplr φ x D j g D | g f x x D
45 4 psrbagf j D j : I 0
46 31 45 syl φ x D j g D | g f x j : I 0
47 30 simprd φ x D j g D | g f x j f x
48 4 psrbagcon x D j : I 0 j f x x f j D x f j f x
49 44 46 47 48 syl3anc φ x D j g D | g f x x f j D x f j f x
50 49 simpld φ x D j g D | g f x x f j D
51 50 adantr φ x D j g D | g f x n h D | h f x f j x f j D
52 4 psrbagf n D n : I 0
53 40 52 syl φ x D j g D | g f x n h D | h f x f j n : I 0
54 39 simprd φ x D j g D | g f x n h D | h f x f j n f x f j
55 4 psrbagcon x f j D n : I 0 n f x f j x f j f n D x f j f n f x f j
56 51 53 54 55 syl3anc φ x D j g D | g f x n h D | h f x f j x f j f n D x f j f n f x f j
57 56 simpld φ x D j g D | g f x n h D | h f x f j x f j f n D
58 43 57 ffvelcdmd φ x D j g D | g f x n h D | h f x f j Z x f j f n Base R
59 10 23 24 41 58 ringcld φ x D j g D | g f x n h D | h f x f j Y n R Z x f j f n Base R
60 10 23 24 33 59 ringcld φ x D j g D | g f x n h D | h f x f j X j R Y n R Z x f j f n Base R
61 60 anasss φ x D j g D | g f x n h D | h f x f j X j R Y n R Z x f j f n Base R
62 fveq2 n = k f j Y n = Y k f j
63 oveq2 n = k f j x f j f n = x f j f k f j
64 63 fveq2d n = k f j Z x f j f n = Z x f j f k f j
65 62 64 oveq12d n = k f j Y n R Z x f j f n = Y k f j R Z x f j f k f j
66 65 oveq2d n = k f j X j R Y n R Z x f j f n = X j R Y k f j R Z x f j f k f j
67 4 19 20 10 22 61 66 psrass1lem φ x D R k g D | g f x R j h D | h f k X j R Y k f j R Z x f j f k f j = R j g D | g f x R n h D | h f x f j X j R Y n R Z x f j f n
68 7 ad2antrr φ x D k g D | g f x X B
69 8 ad2antrr φ x D k g D | g f x Y B
70 simpr φ x D k g D | g f x k g D | g f x
71 breq1 g = k g f x k f x
72 71 elrab k g D | g f x k D k f x
73 70 72 sylib φ x D k g D | g f x k D k f x
74 73 simpld φ x D k g D | g f x k D
75 1 6 23 5 4 68 69 74 psrmulval φ x D k g D | g f x X × ˙ Y k = R j h D | h f k X j R Y k f j
76 75 oveq1d φ x D k g D | g f x X × ˙ Y k R Z x f k = R j h D | h f k X j R Y k f j R Z x f k
77 eqid 0 R = 0 R
78 3 ad2antrr φ x D k g D | g f x R Ring
79 4 psrbaglefi k D h D | h f k Fin
80 74 79 syl φ x D k g D | g f x h D | h f k Fin
81 42 ad2antrr φ x D k g D | g f x Z : D Base R
82 simplr φ x D k g D | g f x x D
83 4 psrbagf k D k : I 0
84 74 83 syl φ x D k g D | g f x k : I 0
85 73 simprd φ x D k g D | g f x k f x
86 4 psrbagcon x D k : I 0 k f x x f k D x f k f x
87 82 84 85 86 syl3anc φ x D k g D | g f x x f k D x f k f x
88 87 simpld φ x D k g D | g f x x f k D
89 81 88 ffvelcdmd φ x D k g D | g f x Z x f k Base R
90 3 ad3antrrr φ x D k g D | g f x j h D | h f k R Ring
91 25 ad3antrrr φ x D k g D | g f x j h D | h f k X : D Base R
92 simpr φ x D k g D | g f x j h D | h f k j h D | h f k
93 breq1 h = j h f k j f k
94 93 elrab j h D | h f k j D j f k
95 92 94 sylib φ x D k g D | g f x j h D | h f k j D j f k
96 95 simpld φ x D k g D | g f x j h D | h f k j D
97 91 96 ffvelcdmd φ x D k g D | g f x j h D | h f k X j Base R
98 34 ad3antrrr φ x D k g D | g f x j h D | h f k Y : D Base R
99 74 adantr φ x D k g D | g f x j h D | h f k k D
100 96 45 syl φ x D k g D | g f x j h D | h f k j : I 0
101 95 simprd φ x D k g D | g f x j h D | h f k j f k
102 4 psrbagcon k D j : I 0 j f k k f j D k f j f k
103 99 100 101 102 syl3anc φ x D k g D | g f x j h D | h f k k f j D k f j f k
104 103 simpld φ x D k g D | g f x j h D | h f k k f j D
105 98 104 ffvelcdmd φ x D k g D | g f x j h D | h f k Y k f j Base R
106 10 23 90 97 105 ringcld φ x D k g D | g f x j h D | h f k X j R Y k f j Base R
107 eqid j h D | h f k X j R Y k f j = j h D | h f k X j R Y k f j
108 fvex 0 R V
109 108 a1i φ x D k g D | g f x 0 R V
110 107 80 106 109 fsuppmptdm φ x D k g D | g f x finSupp 0 R j h D | h f k X j R Y k f j
111 10 77 23 78 80 89 106 110 gsummulc1 φ x D k g D | g f x R j h D | h f k X j R Y k f j R Z x f k = R j h D | h f k X j R Y k f j R Z x f k
112 89 adantr φ x D k g D | g f x j h D | h f k Z x f k Base R
113 10 23 ringass R Ring X j Base R Y k f j Base R Z x f k Base R X j R Y k f j R Z x f k = X j R Y k f j R Z x f k
114 90 97 105 112 113 syl13anc φ x D k g D | g f x j h D | h f k X j R Y k f j R Z x f k = X j R Y k f j R Z x f k
115 4 psrbagf x D x : I 0
116 115 ad3antlr φ x D k g D | g f x j h D | h f k x : I 0
117 116 ffvelcdmda φ x D k g D | g f x j h D | h f k z I x z 0
118 84 adantr φ x D k g D | g f x j h D | h f k k : I 0
119 118 ffvelcdmda φ x D k g D | g f x j h D | h f k z I k z 0
120 100 ffvelcdmda φ x D k g D | g f x j h D | h f k z I j z 0
121 nn0cn x z 0 x z
122 nn0cn k z 0 k z
123 nn0cn j z 0 j z
124 nnncan2 x z k z j z x z - j z - k z j z = x z k z
125 121 122 123 124 syl3an x z 0 k z 0 j z 0 x z - j z - k z j z = x z k z
126 117 119 120 125 syl3anc φ x D k g D | g f x j h D | h f k z I x z - j z - k z j z = x z k z
127 126 mpteq2dva φ x D k g D | g f x j h D | h f k z I x z - j z - k z j z = z I x z k z
128 2 ad3antrrr φ x D k g D | g f x j h D | h f k I V
129 ovexd φ x D k g D | g f x j h D | h f k z I x z j z V
130 ovexd φ x D k g D | g f x j h D | h f k z I k z j z V
131 116 feqmptd φ x D k g D | g f x j h D | h f k x = z I x z
132 100 feqmptd φ x D k g D | g f x j h D | h f k j = z I j z
133 128 117 120 131 132 offval2 φ x D k g D | g f x j h D | h f k x f j = z I x z j z
134 118 feqmptd φ x D k g D | g f x j h D | h f k k = z I k z
135 128 119 120 134 132 offval2 φ x D k g D | g f x j h D | h f k k f j = z I k z j z
136 128 129 130 133 135 offval2 φ x D k g D | g f x j h D | h f k x f j f k f j = z I x z - j z - k z j z
137 128 117 119 131 134 offval2 φ x D k g D | g f x j h D | h f k x f k = z I x z k z
138 127 136 137 3eqtr4d φ x D k g D | g f x j h D | h f k x f j f k f j = x f k
139 138 fveq2d φ x D k g D | g f x j h D | h f k Z x f j f k f j = Z x f k
140 139 oveq2d φ x D k g D | g f x j h D | h f k Y k f j R Z x f j f k f j = Y k f j R Z x f k
141 140 oveq2d φ x D k g D | g f x j h D | h f k X j R Y k f j R Z x f j f k f j = X j R Y k f j R Z x f k
142 114 141 eqtr4d φ x D k g D | g f x j h D | h f k X j R Y k f j R Z x f k = X j R Y k f j R Z x f j f k f j
143 142 mpteq2dva φ x D k g D | g f x j h D | h f k X j R Y k f j R Z x f k = j h D | h f k X j R Y k f j R Z x f j f k f j
144 143 oveq2d φ x D k g D | g f x R j h D | h f k X j R Y k f j R Z x f k = R j h D | h f k X j R Y k f j R Z x f j f k f j
145 76 111 144 3eqtr2d φ x D k g D | g f x X × ˙ Y k R Z x f k = R j h D | h f k X j R Y k f j R Z x f j f k f j
146 145 mpteq2dva φ x D k g D | g f x X × ˙ Y k R Z x f k = k g D | g f x R j h D | h f k X j R Y k f j R Z x f j f k f j
147 146 oveq2d φ x D R k g D | g f x X × ˙ Y k R Z x f k = R k g D | g f x R j h D | h f k X j R Y k f j R Z x f j f k f j
148 8 ad2antrr φ x D j g D | g f x Y B
149 9 ad2antrr φ x D j g D | g f x Z B
150 1 6 23 5 4 148 149 50 psrmulval φ x D j g D | g f x Y × ˙ Z x f j = R n h D | h f x f j Y n R Z x f j f n
151 150 oveq2d φ x D j g D | g f x X j R Y × ˙ Z x f j = X j R R n h D | h f x f j Y n R Z x f j f n
152 3 ad2antrr φ x D j g D | g f x R Ring
153 4 psrbaglefi x f j D h D | h f x f j Fin
154 50 153 syl φ x D j g D | g f x h D | h f x f j Fin
155 ovex 0 I V
156 4 155 rab2ex h D | h f x f j V
157 156 mptex n h D | h f x f j Y n R Z x f j f n V
158 funmpt Fun n h D | h f x f j Y n R Z x f j f n
159 157 158 108 3pm3.2i n h D | h f x f j Y n R Z x f j f n V Fun n h D | h f x f j Y n R Z x f j f n 0 R V
160 159 a1i φ x D j g D | g f x n h D | h f x f j Y n R Z x f j f n V Fun n h D | h f x f j Y n R Z x f j f n 0 R V
161 suppssdm n h D | h f x f j Y n R Z x f j f n supp 0 R dom n h D | h f x f j Y n R Z x f j f n
162 eqid n h D | h f x f j Y n R Z x f j f n = n h D | h f x f j Y n R Z x f j f n
163 162 dmmptss dom n h D | h f x f j Y n R Z x f j f n h D | h f x f j
164 161 163 sstri n h D | h f x f j Y n R Z x f j f n supp 0 R h D | h f x f j
165 164 a1i φ x D j g D | g f x n h D | h f x f j Y n R Z x f j f n supp 0 R h D | h f x f j
166 suppssfifsupp n h D | h f x f j Y n R Z x f j f n V Fun n h D | h f x f j Y n R Z x f j f n 0 R V h D | h f x f j Fin n h D | h f x f j Y n R Z x f j f n supp 0 R h D | h f x f j finSupp 0 R n h D | h f x f j Y n R Z x f j f n
167 160 154 165 166 syl12anc φ x D j g D | g f x finSupp 0 R n h D | h f x f j Y n R Z x f j f n
168 10 77 23 152 154 32 59 167 gsummulc2 φ x D j g D | g f x R n h D | h f x f j X j R Y n R Z x f j f n = X j R R n h D | h f x f j Y n R Z x f j f n
169 151 168 eqtr4d φ x D j g D | g f x X j R Y × ˙ Z x f j = R n h D | h f x f j X j R Y n R Z x f j f n
170 169 mpteq2dva φ x D j g D | g f x X j R Y × ˙ Z x f j = j g D | g f x R n h D | h f x f j X j R Y n R Z x f j f n
171 170 oveq2d φ x D R j g D | g f x X j R Y × ˙ Z x f j = R j g D | g f x R n h D | h f x f j X j R Y n R Z x f j f n
172 67 147 171 3eqtr4d φ x D R k g D | g f x X × ˙ Y k R Z x f k = R j g D | g f x X j R Y × ˙ Z x f j
173 11 adantr φ x D X × ˙ Y B
174 9 adantr φ x D Z B
175 1 6 23 5 4 173 174 20 psrmulval φ x D X × ˙ Y × ˙ Z x = R k g D | g f x X × ˙ Y k R Z x f k
176 7 adantr φ x D X B
177 15 adantr φ x D Y × ˙ Z B
178 1 6 23 5 4 176 177 20 psrmulval φ x D X × ˙ Y × ˙ Z x = R j g D | g f x X j R Y × ˙ Z x f j
179 172 175 178 3eqtr4d φ x D X × ˙ Y × ˙ Z x = X × ˙ Y × ˙ Z x
180 14 18 179 eqfnfvd φ X × ˙ Y × ˙ Z = X × ˙ Y × ˙ Z