Metamath Proof Explorer


Theorem psrassa

Description: The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrcnrg.s S = I mPwSer R
psrcnrg.i φ I V
psrcnrg.r φ R CRing
Assertion psrassa φ S AssAlg

Proof

Step Hyp Ref Expression
1 psrcnrg.s S = I mPwSer R
2 psrcnrg.i φ I V
3 psrcnrg.r φ R CRing
4 eqidd φ Base S = Base S
5 1 2 3 psrsca φ R = Scalar S
6 eqidd φ Base R = Base R
7 eqidd φ S = S
8 eqidd φ S = S
9 crngring R CRing R Ring
10 3 9 syl φ R Ring
11 1 2 10 psrlmod φ S LMod
12 1 2 10 psrring φ S Ring
13 2 adantr φ x Base R y Base S z Base S I V
14 10 adantr φ x Base R y Base S z Base S R Ring
15 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
16 eqid S = S
17 eqid Base S = Base S
18 simpr2 φ x Base R y Base S z Base S y Base S
19 simpr3 φ x Base R y Base S z Base S z Base S
20 3 adantr φ x Base R y Base S z Base S R CRing
21 eqid Base R = Base R
22 eqid S = S
23 simpr1 φ x Base R y Base S z Base S x Base R
24 1 13 14 15 16 17 18 19 20 21 22 23 psrass23 φ x Base R y Base S z Base S x S y S z = x S y S z y S x S z = x S y S z
25 24 simpld φ x Base R y Base S z Base S x S y S z = x S y S z
26 24 simprd φ x Base R y Base S z Base S y S x S z = x S y S z
27 4 5 6 7 8 11 12 3 25 26 isassad φ S AssAlg