Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
psrbag0
Next ⟩
psrbagsn
Metamath Proof Explorer
Ascii
Unicode
Theorem
psrbag0
Description:
The empty bag is a bag.
(Contributed by
Stefan O'Rear
, 9-Mar-2015)
Ref
Expression
Hypothesis
psrbag0.d
⊢
D
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
Assertion
psrbag0
⊢
I
∈
V
→
I
×
0
∈
D
Proof
Step
Hyp
Ref
Expression
1
psrbag0.d
⊢
D
=
f
∈
ℕ
0
I
|
f
-1
ℕ
∈
Fin
2
0nn0
⊢
0
∈
ℕ
0
3
2
fconst6
⊢
I
×
0
:
I
⟶
ℕ
0
4
c0ex
⊢
0
∈
V
5
4
fconst
⊢
I
×
0
:
I
⟶
0
6
incom
⊢
0
∩
ℕ
=
ℕ
∩
0
7
0nnn
⊢
¬
0
∈
ℕ
8
disjsn
⊢
ℕ
∩
0
=
∅
↔
¬
0
∈
ℕ
9
7
8
mpbir
⊢
ℕ
∩
0
=
∅
10
6
9
eqtri
⊢
0
∩
ℕ
=
∅
11
fimacnvdisj
⊢
I
×
0
:
I
⟶
0
∧
0
∩
ℕ
=
∅
→
I
×
0
-1
ℕ
=
∅
12
5
10
11
mp2an
⊢
I
×
0
-1
ℕ
=
∅
13
0fin
⊢
∅
∈
Fin
14
12
13
eqeltri
⊢
I
×
0
-1
ℕ
∈
Fin
15
3
14
pm3.2i
⊢
I
×
0
:
I
⟶
ℕ
0
∧
I
×
0
-1
ℕ
∈
Fin
16
1
psrbag
⊢
I
∈
V
→
I
×
0
∈
D
↔
I
×
0
:
I
⟶
ℕ
0
∧
I
×
0
-1
ℕ
∈
Fin
17
15
16
mpbiri
⊢
I
∈
V
→
I
×
0
∈
D