Metamath Proof Explorer


Theorem psrbag0

Description: The empty bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015)

Ref Expression
Hypothesis psrbag0.d D = f 0 I | f -1 Fin
Assertion psrbag0 I V I × 0 D

Proof

Step Hyp Ref Expression
1 psrbag0.d D = f 0 I | f -1 Fin
2 0nn0 0 0
3 2 fconst6 I × 0 : I 0
4 c0ex 0 V
5 4 fconst I × 0 : I 0
6 incom 0 = 0
7 0nnn ¬ 0
8 disjsn 0 = ¬ 0
9 7 8 mpbir 0 =
10 6 9 eqtri 0 =
11 fimacnvdisj I × 0 : I 0 0 = I × 0 -1 =
12 5 10 11 mp2an I × 0 -1 =
13 0fin Fin
14 12 13 eqeltri I × 0 -1 Fin
15 3 14 pm3.2i I × 0 : I 0 I × 0 -1 Fin
16 1 psrbag I V I × 0 D I × 0 : I 0 I × 0 -1 Fin
17 15 16 mpbiri I V I × 0 D