Metamath Proof Explorer


Theorem psrbagcon

Description: The analogue of the statement " 0 <_ G <_ F implies 0 <_ F - G <_ F " for finite bags. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024)

Ref Expression
Hypothesis psrbag.d D = f 0 I | f -1 Fin
Assertion psrbagcon F D G : I 0 G f F F f G D F f G f F

Proof

Step Hyp Ref Expression
1 psrbag.d D = f 0 I | f -1 Fin
2 1 psrbagf F D F : I 0
3 2 ffnd F D F Fn I
4 3 3ad2ant1 F D G : I 0 G f F F Fn I
5 simp2 F D G : I 0 G f F G : I 0
6 5 ffnd F D G : I 0 G f F G Fn I
7 id F D F D
8 7 3 fndmexd F D I V
9 8 3ad2ant1 F D G : I 0 G f F I V
10 inidm I I = I
11 4 6 9 9 10 offn F D G : I 0 G f F F f G Fn I
12 eqidd F D G : I 0 G f F x I F x = F x
13 eqidd F D G : I 0 G f F x I G x = G x
14 4 6 9 9 10 12 13 ofval F D G : I 0 G f F x I F f G x = F x G x
15 simp3 F D G : I 0 G f F G f F
16 6 4 9 9 10 13 12 ofrfval F D G : I 0 G f F G f F x I G x F x
17 15 16 mpbid F D G : I 0 G f F x I G x F x
18 17 r19.21bi F D G : I 0 G f F x I G x F x
19 5 ffvelrnda F D G : I 0 G f F x I G x 0
20 2 3ad2ant1 F D G : I 0 G f F F : I 0
21 20 ffvelrnda F D G : I 0 G f F x I F x 0
22 nn0sub G x 0 F x 0 G x F x F x G x 0
23 19 21 22 syl2anc F D G : I 0 G f F x I G x F x F x G x 0
24 18 23 mpbid F D G : I 0 G f F x I F x G x 0
25 14 24 eqeltrd F D G : I 0 G f F x I F f G x 0
26 25 ralrimiva F D G : I 0 G f F x I F f G x 0
27 ffnfv F f G : I 0 F f G Fn I x I F f G x 0
28 11 26 27 sylanbrc F D G : I 0 G f F F f G : I 0
29 simp1 F D G : I 0 G f F F D
30 1 psrbag I V F D F : I 0 F -1 Fin
31 9 30 syl F D G : I 0 G f F F D F : I 0 F -1 Fin
32 29 31 mpbid F D G : I 0 G f F F : I 0 F -1 Fin
33 32 simprd F D G : I 0 G f F F -1 Fin
34 19 nn0ge0d F D G : I 0 G f F x I 0 G x
35 21 nn0red F D G : I 0 G f F x I F x
36 19 nn0red F D G : I 0 G f F x I G x
37 35 36 subge02d F D G : I 0 G f F x I 0 G x F x G x F x
38 34 37 mpbid F D G : I 0 G f F x I F x G x F x
39 38 ralrimiva F D G : I 0 G f F x I F x G x F x
40 11 4 9 9 10 14 12 ofrfval F D G : I 0 G f F F f G f F x I F x G x F x
41 39 40 mpbird F D G : I 0 G f F F f G f F
42 1 psrbaglesupp F D F f G : I 0 F f G f F F f G -1 F -1
43 29 28 41 42 syl3anc F D G : I 0 G f F F f G -1 F -1
44 33 43 ssfid F D G : I 0 G f F F f G -1 Fin
45 1 psrbag I V F f G D F f G : I 0 F f G -1 Fin
46 9 45 syl F D G : I 0 G f F F f G D F f G : I 0 F f G -1 Fin
47 28 44 46 mpbir2and F D G : I 0 G f F F f G D
48 47 41 jca F D G : I 0 G f F F f G D F f G f F