Step |
Hyp |
Ref |
Expression |
1 |
|
psrbag.d |
|
2 |
|
simpr1 |
|
3 |
1
|
psrbag |
|
4 |
3
|
adantr |
|
5 |
2 4
|
mpbid |
|
6 |
5
|
simpld |
|
7 |
6
|
ffnd |
|
8 |
|
simpr2 |
|
9 |
8
|
ffnd |
|
10 |
|
simpl |
|
11 |
|
inidm |
|
12 |
7 9 10 10 11
|
offn |
|
13 |
|
eqidd |
|
14 |
|
eqidd |
|
15 |
7 9 10 10 11 13 14
|
ofval |
|
16 |
|
simpr3 |
|
17 |
9 7 10 10 11 14 13
|
ofrfval |
|
18 |
16 17
|
mpbid |
|
19 |
18
|
r19.21bi |
|
20 |
8
|
ffvelrnda |
|
21 |
6
|
ffvelrnda |
|
22 |
|
nn0sub |
|
23 |
20 21 22
|
syl2anc |
|
24 |
19 23
|
mpbid |
|
25 |
15 24
|
eqeltrd |
|
26 |
25
|
ralrimiva |
|
27 |
|
ffnfv |
|
28 |
12 26 27
|
sylanbrc |
|
29 |
5
|
simprd |
|
30 |
20
|
nn0ge0d |
|
31 |
|
nn0re |
|
32 |
|
nn0re |
|
33 |
|
subge02 |
|
34 |
31 32 33
|
syl2an |
|
35 |
21 20 34
|
syl2anc |
|
36 |
30 35
|
mpbid |
|
37 |
36
|
ralrimiva |
|
38 |
12 7 10 10 11 15 13
|
ofrfval |
|
39 |
37 38
|
mpbird |
|
40 |
1
|
psrbaglesuppOLD |
|
41 |
10 2 28 39 40
|
syl13anc |
|
42 |
29 41
|
ssfid |
|
43 |
1
|
psrbag |
|
44 |
43
|
adantr |
|
45 |
28 42 44
|
mpbir2and |
|
46 |
45 39
|
jca |
|