Metamath Proof Explorer


Theorem psrbagconcl

Description: The complement of a bag is a bag. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024)

Ref Expression
Hypotheses psrbag.d D = f 0 I | f -1 Fin
psrbagconf1o.s S = y D | y f F
Assertion psrbagconcl F D X S F f X S

Proof

Step Hyp Ref Expression
1 psrbag.d D = f 0 I | f -1 Fin
2 psrbagconf1o.s S = y D | y f F
3 simpl F D X S F D
4 simpr F D X S X S
5 breq1 y = X y f F X f F
6 5 2 elrab2 X S X D X f F
7 4 6 sylib F D X S X D X f F
8 7 simpld F D X S X D
9 1 psrbagf X D X : I 0
10 8 9 syl F D X S X : I 0
11 7 simprd F D X S X f F
12 1 psrbagcon F D X : I 0 X f F F f X D F f X f F
13 3 10 11 12 syl3anc F D X S F f X D F f X f F
14 breq1 y = F f X y f F F f X f F
15 14 2 elrab2 F f X S F f X D F f X f F
16 13 15 sylibr F D X S F f X S