Metamath Proof Explorer


Theorem psrbagconclOLD

Description: Obsolete version of psrbagconcl as of 6-Aug-2024. (Contributed by Mario Carneiro, 29-Dec-2014) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses psrbag.d D=f0I|f-1Fin
psrbagconf1o.s S=yD|yfF
Assertion psrbagconclOLD IVFDXSFfXS

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 psrbagconf1o.s S=yD|yfF
3 simp1 IVFDXSIV
4 simp2 IVFDXSFD
5 simp3 IVFDXSXS
6 breq1 y=XyfFXfF
7 6 2 elrab2 XSXDXfF
8 5 7 sylib IVFDXSXDXfF
9 8 simpld IVFDXSXD
10 1 psrbagfOLD IVXDX:I0
11 3 9 10 syl2anc IVFDXSX:I0
12 8 simprd IVFDXSXfF
13 1 psrbagconOLD IVFDX:I0XfFFfXDFfXfF
14 3 4 11 12 13 syl13anc IVFDXSFfXDFfXfF
15 breq1 y=FfXyfFFfXfF
16 15 2 elrab2 FfXSFfXDFfXfF
17 14 16 sylibr IVFDXSFfXS