Step |
Hyp |
Ref |
Expression |
1 |
|
psrbag.d |
|
2 |
|
psrbagconf1o.s |
|
3 |
|
eqid |
|
4 |
1 2
|
psrbagconcl |
|
5 |
1 2
|
psrbagconcl |
|
6 |
1
|
psrbagf |
|
7 |
6
|
adantr |
|
8 |
7
|
ffvelrnda |
|
9 |
2
|
ssrab3 |
|
10 |
9
|
sseli |
|
11 |
10
|
adantl |
|
12 |
1
|
psrbagf |
|
13 |
11 12
|
syl |
|
14 |
13
|
adantrl |
|
15 |
14
|
ffvelrnda |
|
16 |
|
simprl |
|
17 |
9 16
|
sselid |
|
18 |
1
|
psrbagf |
|
19 |
17 18
|
syl |
|
20 |
19
|
ffvelrnda |
|
21 |
|
nn0cn |
|
22 |
|
nn0cn |
|
23 |
|
nn0cn |
|
24 |
|
subsub23 |
|
25 |
21 22 23 24
|
syl3an |
|
26 |
8 15 20 25
|
syl3anc |
|
27 |
|
eqcom |
|
28 |
|
eqcom |
|
29 |
26 27 28
|
3bitr4g |
|
30 |
6
|
ffnd |
|
31 |
30
|
adantr |
|
32 |
13
|
ffnd |
|
33 |
32
|
adantrl |
|
34 |
19
|
ffnd |
|
35 |
16 34
|
fndmexd |
|
36 |
|
inidm |
|
37 |
|
eqidd |
|
38 |
|
eqidd |
|
39 |
31 33 35 35 36 37 38
|
ofval |
|
40 |
39
|
eqeq2d |
|
41 |
|
eqidd |
|
42 |
31 34 35 35 36 37 41
|
ofval |
|
43 |
42
|
eqeq2d |
|
44 |
29 40 43
|
3bitr4d |
|
45 |
44
|
ralbidva |
|
46 |
5
|
adantrl |
|
47 |
9 46
|
sselid |
|
48 |
1
|
psrbagf |
|
49 |
47 48
|
syl |
|
50 |
49
|
ffnd |
|
51 |
|
eqfnfv |
|
52 |
34 50 51
|
syl2anc |
|
53 |
9 4
|
sselid |
|
54 |
1
|
psrbagf |
|
55 |
53 54
|
syl |
|
56 |
55
|
ffnd |
|
57 |
56
|
adantrr |
|
58 |
|
eqfnfv |
|
59 |
33 57 58
|
syl2anc |
|
60 |
45 52 59
|
3bitr4d |
|
61 |
3 4 5 60
|
f1o2d |
|