Metamath Proof Explorer


Theorem psrbagev2

Description: Closure of a sum using a bag of multipliers. (Contributed by Stefan O'Rear, 9-Mar-2015) (Proof shortened by AV, 18-Jul-2019) (Revised by AV, 11-Apr-2024) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypotheses psrbagev2.d D = h 0 I | h -1 Fin
psrbagev2.c C = Base T
psrbagev2.x · ˙ = T
psrbagev2.t φ T CMnd
psrbagev2.b φ B D
psrbagev2.g φ G : I C
Assertion psrbagev2 φ T B · ˙ f G C

Proof

Step Hyp Ref Expression
1 psrbagev2.d D = h 0 I | h -1 Fin
2 psrbagev2.c C = Base T
3 psrbagev2.x · ˙ = T
4 psrbagev2.t φ T CMnd
5 psrbagev2.b φ B D
6 psrbagev2.g φ G : I C
7 eqid 0 T = 0 T
8 ovexd φ B · ˙ f G V
9 1 2 3 7 4 5 6 psrbagev1 φ B · ˙ f G : I C finSupp 0 T B · ˙ f G
10 9 simpld φ B · ˙ f G : I C
11 10 ffnd φ B · ˙ f G Fn I
12 8 11 fndmexd φ I V
13 9 simprd φ finSupp 0 T B · ˙ f G
14 2 7 4 12 10 13 gsumcl φ T B · ˙ f G C