Metamath Proof Explorer


Theorem psrbagev2OLD

Description: Obsolete version of psrbagev2 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015) (Proof shortened by AV, 18-Jul-2019) (Revised by AV, 11-Apr-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses psrbagev2.d D = h 0 I | h -1 Fin
psrbagev2.c C = Base T
psrbagev2.x · ˙ = T
psrbagev2.t φ T CMnd
psrbagev2.b φ B D
psrbagev2.g φ G : I C
psrbagev2OLD.i φ I W
Assertion psrbagev2OLD φ T B · ˙ f G C

Proof

Step Hyp Ref Expression
1 psrbagev2.d D = h 0 I | h -1 Fin
2 psrbagev2.c C = Base T
3 psrbagev2.x · ˙ = T
4 psrbagev2.t φ T CMnd
5 psrbagev2.b φ B D
6 psrbagev2.g φ G : I C
7 psrbagev2OLD.i φ I W
8 eqid 0 T = 0 T
9 1 2 3 8 4 5 6 7 psrbagev1OLD φ B · ˙ f G : I C finSupp 0 T B · ˙ f G
10 9 simpld φ B · ˙ f G : I C
11 9 simprd φ finSupp 0 T B · ˙ f G
12 2 8 4 7 10 11 gsumcl φ T B · ˙ f G C