Metamath Proof Explorer


Theorem psrbagf

Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024)

Ref Expression
Hypothesis psrbag.d D = f 0 I | f -1 Fin
Assertion psrbagf F D F : I 0

Proof

Step Hyp Ref Expression
1 psrbag.d D = f 0 I | f -1 Fin
2 1 eleq2i F D F f 0 I | f -1 Fin
3 elrabi F f 0 I | f -1 Fin F 0 I
4 elmapi F 0 I F : I 0
5 3 4 syl F f 0 I | f -1 Fin F : I 0
6 2 5 sylbi F D F : I 0