Metamath Proof Explorer


Theorem psrbagfsupp

Description: Finite bags have finite support. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 18-Jul-2019) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypothesis psrbag.d D = f 0 I | f -1 Fin
Assertion psrbagfsupp F D finSupp 0 F

Proof

Step Hyp Ref Expression
1 psrbag.d D = f 0 I | f -1 Fin
2 id F D F D
3 1 psrbagf F D F : I 0
4 3 ffnd F D F Fn I
5 2 4 fndmexd F D I V
6 1 psrbag I V F D F : I 0 F -1 Fin
7 6 biimpa I V F D F : I 0 F -1 Fin
8 5 7 mpancom F D F : I 0 F -1 Fin
9 8 simprd F D F -1 Fin
10 frnnn0fsuppg F D F : I 0 finSupp 0 F F -1 Fin
11 3 10 mpdan F D finSupp 0 F F -1 Fin
12 9 11 mpbird F D finSupp 0 F