Metamath Proof Explorer


Theorem psrbagfsuppOLD

Description: Obsolete version of psrbagfsupp as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 18-Jul-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis psrbag.d D = f 0 I | f -1 Fin
Assertion psrbagfsuppOLD X D I V finSupp 0 X

Proof

Step Hyp Ref Expression
1 psrbag.d D = f 0 I | f -1 Fin
2 1 psrbag I V X D X : I 0 X -1 Fin
3 2 biimpac X D I V X : I 0 X -1 Fin
4 3 simprd X D I V X -1 Fin
5 simpr X D I V I V
6 1 psrbagfOLD I V X D X : I 0
7 6 ancoms X D I V X : I 0
8 frnnn0fsupp I V X : I 0 finSupp 0 X X -1 Fin
9 5 7 8 syl2anc X D I V finSupp 0 X X -1 Fin
10 4 9 mpbird X D I V finSupp 0 X