Metamath Proof Explorer


Theorem psrbaglecl

Description: The set of finite bags is downward-closed. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024)

Ref Expression
Hypothesis psrbag.d D = f 0 I | f -1 Fin
Assertion psrbaglecl F D G : I 0 G f F G D

Proof

Step Hyp Ref Expression
1 psrbag.d D = f 0 I | f -1 Fin
2 simp2 F D G : I 0 G f F G : I 0
3 simp1 F D G : I 0 G f F F D
4 id F D F D
5 1 psrbagf F D F : I 0
6 5 ffnd F D F Fn I
7 4 6 fndmexd F D I V
8 7 3ad2ant1 F D G : I 0 G f F I V
9 1 psrbag I V F D F : I 0 F -1 Fin
10 8 9 syl F D G : I 0 G f F F D F : I 0 F -1 Fin
11 3 10 mpbid F D G : I 0 G f F F : I 0 F -1 Fin
12 11 simprd F D G : I 0 G f F F -1 Fin
13 1 psrbaglesupp F D G : I 0 G f F G -1 F -1
14 12 13 ssfid F D G : I 0 G f F G -1 Fin
15 1 psrbag I V G D G : I 0 G -1 Fin
16 8 15 syl F D G : I 0 G f F G D G : I 0 G -1 Fin
17 2 14 16 mpbir2and F D G : I 0 G f F G D