Metamath Proof Explorer


Theorem psrbagres

Description: Restrict a bag of variables in I to a bag of variables in J C_ I . (Contributed by SN, 10-Mar-2025)

Ref Expression
Hypotheses psrbagres.d D = h 0 I | h -1 Fin
psrbagres.e E = g 0 J | g -1 Fin
psrbagres.i φ I V
psrbagres.j φ J I
psrbagres.f φ F D
Assertion psrbagres φ F J E

Proof

Step Hyp Ref Expression
1 psrbagres.d D = h 0 I | h -1 Fin
2 psrbagres.e E = g 0 J | g -1 Fin
3 psrbagres.i φ I V
4 psrbagres.j φ J I
5 psrbagres.f φ F D
6 1 psrbagf F D F : I 0
7 5 6 syl φ F : I 0
8 7 4 fssresd φ F J : J 0
9 1 psrbagfsupp F D finSupp 0 F
10 5 9 syl φ finSupp 0 F
11 0zd φ 0
12 10 11 fsuppres φ finSupp 0 F J
13 5 resexd φ F J V
14 fcdmnn0fsuppg F J V F J : J 0 finSupp 0 F J F J -1 Fin
15 13 8 14 syl2anc φ finSupp 0 F J F J -1 Fin
16 12 15 mpbid φ F J -1 Fin
17 3 4 ssexd φ J V
18 2 psrbag J V F J E F J : J 0 F J -1 Fin
19 17 18 syl φ F J E F J : J 0 F J -1 Fin
20 8 16 19 mpbir2and φ F J E