Metamath Proof Explorer


Theorem psrbas

Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015) (Proof shortened by AV, 8-Jul-2019)

Ref Expression
Hypotheses psrbas.s S = I mPwSer R
psrbas.k K = Base R
psrbas.d D = f 0 I | f -1 Fin
psrbas.b B = Base S
psrbas.i φ I V
Assertion psrbas φ B = K D

Proof

Step Hyp Ref Expression
1 psrbas.s S = I mPwSer R
2 psrbas.k K = Base R
3 psrbas.d D = f 0 I | f -1 Fin
4 psrbas.b B = Base S
5 psrbas.i φ I V
6 eqid + R = + R
7 eqid R = R
8 eqid TopOpen R = TopOpen R
9 eqidd φ R V K D = K D
10 eqid f + R K D × K D = f + R K D × K D
11 eqid g K D , h K D k D R x y D | y f k g x R h k f x = g K D , h K D k D R x y D | y f k g x R h k f x
12 eqid x K , g K D D × x R f g = x K , g K D D × x R f g
13 eqidd φ R V 𝑡 D × TopOpen R = 𝑡 D × TopOpen R
14 5 adantr φ R V I V
15 simpr φ R V R V
16 1 2 6 7 8 3 9 10 11 12 13 14 15 psrval φ R V S = Base ndx K D + ndx f + R K D × K D ndx g K D , h K D k D R x y D | y f k g x R h k f x Scalar ndx R ndx x K , g K D D × x R f g TopSet ndx 𝑡 D × TopOpen R
17 16 fveq2d φ R V Base S = Base Base ndx K D + ndx f + R K D × K D ndx g K D , h K D k D R x y D | y f k g x R h k f x Scalar ndx R ndx x K , g K D D × x R f g TopSet ndx 𝑡 D × TopOpen R
18 ovex K D V
19 psrvalstr Base ndx K D + ndx f + R K D × K D ndx g K D , h K D k D R x y D | y f k g x R h k f x Scalar ndx R ndx x K , g K D D × x R f g TopSet ndx 𝑡 D × TopOpen R Struct 1 9
20 baseid Base = Slot Base ndx
21 snsstp1 Base ndx K D Base ndx K D + ndx f + R K D × K D ndx g K D , h K D k D R x y D | y f k g x R h k f x
22 ssun1 Base ndx K D + ndx f + R K D × K D ndx g K D , h K D k D R x y D | y f k g x R h k f x Base ndx K D + ndx f + R K D × K D ndx g K D , h K D k D R x y D | y f k g x R h k f x Scalar ndx R ndx x K , g K D D × x R f g TopSet ndx 𝑡 D × TopOpen R
23 21 22 sstri Base ndx K D Base ndx K D + ndx f + R K D × K D ndx g K D , h K D k D R x y D | y f k g x R h k f x Scalar ndx R ndx x K , g K D D × x R f g TopSet ndx 𝑡 D × TopOpen R
24 19 20 23 strfv K D V K D = Base Base ndx K D + ndx f + R K D × K D ndx g K D , h K D k D R x y D | y f k g x R h k f x Scalar ndx R ndx x K , g K D D × x R f g TopSet ndx 𝑡 D × TopOpen R
25 18 24 ax-mp K D = Base Base ndx K D + ndx f + R K D × K D ndx g K D , h K D k D R x y D | y f k g x R h k f x Scalar ndx R ndx x K , g K D D × x R f g TopSet ndx 𝑡 D × TopOpen R
26 17 4 25 3eqtr4g φ R V B = K D
27 reldmpsr Rel dom mPwSer
28 27 ovprc2 ¬ R V I mPwSer R =
29 28 adantl φ ¬ R V I mPwSer R =
30 1 29 eqtrid φ ¬ R V S =
31 30 fveq2d φ ¬ R V Base S = Base
32 base0 = Base
33 31 4 32 3eqtr4g φ ¬ R V B =
34 fvprc ¬ R V Base R =
35 34 adantl φ ¬ R V Base R =
36 2 35 eqtrid φ ¬ R V K =
37 3 fczpsrbag I V x I 0 D
38 5 37 syl φ x I 0 D
39 38 adantr φ ¬ R V x I 0 D
40 39 ne0d φ ¬ R V D
41 2 fvexi K V
42 ovex 0 I V
43 3 42 rabex2 D V
44 41 43 map0 K D = K = D
45 36 40 44 sylanbrc φ ¬ R V K D =
46 33 45 eqtr4d φ ¬ R V B = K D
47 26 46 pm2.61dan φ B = K D