Metamath Proof Explorer


Theorem psrbaspropd

Description: Property deduction for power series base set. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypothesis psrbaspropd.e φ Base R = Base S
Assertion psrbaspropd φ Base I mPwSer R = Base I mPwSer S

Proof

Step Hyp Ref Expression
1 psrbaspropd.e φ Base R = Base S
2 eqid I mPwSer R = I mPwSer R
3 eqid Base R = Base R
4 eqid a 0 I | a -1 Fin = a 0 I | a -1 Fin
5 eqid Base I mPwSer R = Base I mPwSer R
6 simpr φ I V I V
7 2 3 4 5 6 psrbas φ I V Base I mPwSer R = Base R a 0 I | a -1 Fin
8 eqid I mPwSer S = I mPwSer S
9 eqid Base S = Base S
10 eqid Base I mPwSer S = Base I mPwSer S
11 8 9 4 10 6 psrbas φ I V Base I mPwSer S = Base S a 0 I | a -1 Fin
12 1 adantr φ I V Base R = Base S
13 12 oveq1d φ I V Base R a 0 I | a -1 Fin = Base S a 0 I | a -1 Fin
14 11 13 eqtr4d φ I V Base I mPwSer S = Base R a 0 I | a -1 Fin
15 7 14 eqtr4d φ I V Base I mPwSer R = Base I mPwSer S
16 reldmpsr Rel dom mPwSer
17 16 ovprc1 ¬ I V I mPwSer R =
18 16 ovprc1 ¬ I V I mPwSer S =
19 17 18 eqtr4d ¬ I V I mPwSer R = I mPwSer S
20 19 fveq2d ¬ I V Base I mPwSer R = Base I mPwSer S
21 20 adantl φ ¬ I V Base I mPwSer R = Base I mPwSer S
22 15 21 pm2.61dan φ Base I mPwSer R = Base I mPwSer S