Metamath Proof Explorer


Theorem psrcom

Description: Commutative law for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses psrring.s S = I mPwSer R
psrring.i φ I V
psrring.r φ R Ring
psrass.d D = f 0 I | f -1 Fin
psrass.t × ˙ = S
psrass.b B = Base S
psrass.x φ X B
psrass.y φ Y B
psrcom.c φ R CRing
Assertion psrcom φ X × ˙ Y = Y × ˙ X

Proof

Step Hyp Ref Expression
1 psrring.s S = I mPwSer R
2 psrring.i φ I V
3 psrring.r φ R Ring
4 psrass.d D = f 0 I | f -1 Fin
5 psrass.t × ˙ = S
6 psrass.b B = Base S
7 psrass.x φ X B
8 psrass.y φ Y B
9 psrcom.c φ R CRing
10 eqid Base R = Base R
11 eqid 0 R = 0 R
12 ringcmn R Ring R CMnd
13 3 12 syl φ R CMnd
14 13 adantr φ x D R CMnd
15 4 psrbaglefi x D g D | g f x Fin
16 15 adantl φ x D g D | g f x Fin
17 3 ad2antrr φ x D k g D | g f x R Ring
18 1 10 4 6 7 psrelbas φ X : D Base R
19 18 ad2antrr φ x D k g D | g f x X : D Base R
20 simpr φ x D k g D | g f x k g D | g f x
21 breq1 g = k g f x k f x
22 21 elrab k g D | g f x k D k f x
23 20 22 sylib φ x D k g D | g f x k D k f x
24 23 simpld φ x D k g D | g f x k D
25 19 24 ffvelrnd φ x D k g D | g f x X k Base R
26 1 10 4 6 8 psrelbas φ Y : D Base R
27 26 ad2antrr φ x D k g D | g f x Y : D Base R
28 simplr φ x D k g D | g f x x D
29 4 psrbagf k D k : I 0
30 24 29 syl φ x D k g D | g f x k : I 0
31 23 simprd φ x D k g D | g f x k f x
32 4 psrbagcon x D k : I 0 k f x x f k D x f k f x
33 28 30 31 32 syl3anc φ x D k g D | g f x x f k D x f k f x
34 33 simpld φ x D k g D | g f x x f k D
35 27 34 ffvelrnd φ x D k g D | g f x Y x f k Base R
36 eqid R = R
37 10 36 ringcl R Ring X k Base R Y x f k Base R X k R Y x f k Base R
38 17 25 35 37 syl3anc φ x D k g D | g f x X k R Y x f k Base R
39 38 fmpttd φ x D k g D | g f x X k R Y x f k : g D | g f x Base R
40 ovex 0 I V
41 4 40 rabex2 D V
42 41 a1i φ x D D V
43 rabexg D V g D | g f x V
44 42 43 syl φ x D g D | g f x V
45 44 mptexd φ x D k g D | g f x X k R Y x f k V
46 funmpt Fun k g D | g f x X k R Y x f k
47 46 a1i φ x D Fun k g D | g f x X k R Y x f k
48 fvexd φ x D 0 R V
49 suppssdm k g D | g f x X k R Y x f k supp 0 R dom k g D | g f x X k R Y x f k
50 eqid k g D | g f x X k R Y x f k = k g D | g f x X k R Y x f k
51 50 dmmptss dom k g D | g f x X k R Y x f k g D | g f x
52 49 51 sstri k g D | g f x X k R Y x f k supp 0 R g D | g f x
53 52 a1i φ x D k g D | g f x X k R Y x f k supp 0 R g D | g f x
54 suppssfifsupp k g D | g f x X k R Y x f k V Fun k g D | g f x X k R Y x f k 0 R V g D | g f x Fin k g D | g f x X k R Y x f k supp 0 R g D | g f x finSupp 0 R k g D | g f x X k R Y x f k
55 45 47 48 16 53 54 syl32anc φ x D finSupp 0 R k g D | g f x X k R Y x f k
56 eqid g D | g f x = g D | g f x
57 4 56 psrbagconf1o x D j g D | g f x x f j : g D | g f x 1-1 onto g D | g f x
58 57 adantl φ x D j g D | g f x x f j : g D | g f x 1-1 onto g D | g f x
59 10 11 14 16 39 55 58 gsumf1o φ x D R k g D | g f x X k R Y x f k = R k g D | g f x X k R Y x f k j g D | g f x x f j
60 simplr φ x D j g D | g f x x D
61 simpr φ x D j g D | g f x j g D | g f x
62 4 56 psrbagconcl x D j g D | g f x x f j g D | g f x
63 60 61 62 syl2anc φ x D j g D | g f x x f j g D | g f x
64 eqidd φ x D j g D | g f x x f j = j g D | g f x x f j
65 eqidd φ x D k g D | g f x X k R Y x f k = k g D | g f x X k R Y x f k
66 fveq2 k = x f j X k = X x f j
67 oveq2 k = x f j x f k = x f x f j
68 67 fveq2d k = x f j Y x f k = Y x f x f j
69 66 68 oveq12d k = x f j X k R Y x f k = X x f j R Y x f x f j
70 63 64 65 69 fmptco φ x D k g D | g f x X k R Y x f k j g D | g f x x f j = j g D | g f x X x f j R Y x f x f j
71 4 psrbagf x D x : I 0
72 71 adantl φ x D x : I 0
73 72 adantr φ x D j g D | g f x x : I 0
74 73 ffvelrnda φ x D j g D | g f x z I x z 0
75 breq1 g = j g f x j f x
76 75 elrab j g D | g f x j D j f x
77 61 76 sylib φ x D j g D | g f x j D j f x
78 77 simpld φ x D j g D | g f x j D
79 4 psrbagf j D j : I 0
80 78 79 syl φ x D j g D | g f x j : I 0
81 80 ffvelrnda φ x D j g D | g f x z I j z 0
82 nn0cn x z 0 x z
83 nn0cn j z 0 j z
84 nncan x z j z x z x z j z = j z
85 82 83 84 syl2an x z 0 j z 0 x z x z j z = j z
86 74 81 85 syl2anc φ x D j g D | g f x z I x z x z j z = j z
87 86 mpteq2dva φ x D j g D | g f x z I x z x z j z = z I j z
88 2 ad2antrr φ x D j g D | g f x I V
89 ovex x z j z V
90 89 a1i φ x D j g D | g f x z I x z j z V
91 73 feqmptd φ x D j g D | g f x x = z I x z
92 80 feqmptd φ x D j g D | g f x j = z I j z
93 88 74 81 91 92 offval2 φ x D j g D | g f x x f j = z I x z j z
94 88 74 90 91 93 offval2 φ x D j g D | g f x x f x f j = z I x z x z j z
95 87 94 92 3eqtr4d φ x D j g D | g f x x f x f j = j
96 95 fveq2d φ x D j g D | g f x Y x f x f j = Y j
97 96 oveq2d φ x D j g D | g f x X x f j R Y x f x f j = X x f j R Y j
98 9 ad2antrr φ x D j g D | g f x R CRing
99 18 ad2antrr φ x D j g D | g f x X : D Base R
100 77 simprd φ x D j g D | g f x j f x
101 4 psrbagcon x D j : I 0 j f x x f j D x f j f x
102 60 80 100 101 syl3anc φ x D j g D | g f x x f j D x f j f x
103 102 simpld φ x D j g D | g f x x f j D
104 99 103 ffvelrnd φ x D j g D | g f x X x f j Base R
105 26 ad2antrr φ x D j g D | g f x Y : D Base R
106 105 78 ffvelrnd φ x D j g D | g f x Y j Base R
107 10 36 crngcom R CRing X x f j Base R Y j Base R X x f j R Y j = Y j R X x f j
108 98 104 106 107 syl3anc φ x D j g D | g f x X x f j R Y j = Y j R X x f j
109 97 108 eqtrd φ x D j g D | g f x X x f j R Y x f x f j = Y j R X x f j
110 109 mpteq2dva φ x D j g D | g f x X x f j R Y x f x f j = j g D | g f x Y j R X x f j
111 70 110 eqtrd φ x D k g D | g f x X k R Y x f k j g D | g f x x f j = j g D | g f x Y j R X x f j
112 111 oveq2d φ x D R k g D | g f x X k R Y x f k j g D | g f x x f j = R j g D | g f x Y j R X x f j
113 59 112 eqtrd φ x D R k g D | g f x X k R Y x f k = R j g D | g f x Y j R X x f j
114 113 mpteq2dva φ x D R k g D | g f x X k R Y x f k = x D R j g D | g f x Y j R X x f j
115 1 6 36 5 4 7 8 psrmulfval φ X × ˙ Y = x D R k g D | g f x X k R Y x f k
116 1 6 36 5 4 8 7 psrmulfval φ Y × ˙ X = x D R j g D | g f x Y j R X x f j
117 114 115 116 3eqtr4d φ X × ˙ Y = Y × ˙ X