Metamath Proof Explorer


Theorem psref

Description: A poset is reflexive. (Contributed by NM, 13-May-2008)

Ref Expression
Hypothesis psref.1 X = dom R
Assertion psref R PosetRel A X A R A

Proof

Step Hyp Ref Expression
1 psref.1 X = dom R
2 psdmrn R PosetRel dom R = R ran R = R
3 2 simpld R PosetRel dom R = R
4 1 3 eqtrid R PosetRel X = R
5 4 eleq2d R PosetRel A X A R
6 pslem R PosetRel A R A A R A A R A A R A R A A R A A R A A = A
7 6 simp2d R PosetRel A R A R A
8 5 7 sylbid R PosetRel A X A R A
9 8 imp R PosetRel A X A R A