Metamath Proof Explorer


Theorem psrelbas

Description: An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses psrbas.s S = I mPwSer R
psrbas.k K = Base R
psrbas.d D = f 0 I | f -1 Fin
psrbas.b B = Base S
psrelbas.x φ X B
Assertion psrelbas φ X : D K

Proof

Step Hyp Ref Expression
1 psrbas.s S = I mPwSer R
2 psrbas.k K = Base R
3 psrbas.d D = f 0 I | f -1 Fin
4 psrbas.b B = Base S
5 psrelbas.x φ X B
6 reldmpsr Rel dom mPwSer
7 6 1 4 elbasov X B I V R V
8 5 7 syl φ I V R V
9 8 simpld φ I V
10 1 2 3 4 9 psrbas φ B = K D
11 5 10 eleqtrd φ X K D
12 2 fvexi K V
13 ovex 0 I V
14 3 13 rabex2 D V
15 12 14 elmap X K D X : D K
16 11 15 sylib φ X : D K