Metamath Proof Explorer


Theorem psrelbasfun

Description: An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019)

Ref Expression
Hypotheses psrelbasfun.s S = I mPwSer R
psrelbasfun.b B = Base S
Assertion psrelbasfun X B Fun X

Proof

Step Hyp Ref Expression
1 psrelbasfun.s S = I mPwSer R
2 psrelbasfun.b B = Base S
3 eqid Base R = Base R
4 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
5 id X B X B
6 1 3 4 2 5 psrelbas X B X : f 0 I | f -1 Fin Base R
7 6 ffund X B Fun X