Metamath Proof Explorer


Theorem psrgrp

Description: The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014) (Proof shortened by SN, 7-Feb-2025)

Ref Expression
Hypotheses psrgrp.s S = I mPwSer R
psrgrp.i φ I V
psrgrp.r φ R Grp
Assertion psrgrp φ S Grp

Proof

Step Hyp Ref Expression
1 psrgrp.s S = I mPwSer R
2 psrgrp.i φ I V
3 psrgrp.r φ R Grp
4 ovex 0 I V
5 4 rabex f 0 I | f -1 Fin V
6 eqid R 𝑠 f 0 I | f -1 Fin = R 𝑠 f 0 I | f -1 Fin
7 6 pwsgrp R Grp f 0 I | f -1 Fin V R 𝑠 f 0 I | f -1 Fin Grp
8 3 5 7 sylancl φ R 𝑠 f 0 I | f -1 Fin Grp
9 eqid Base R = Base R
10 6 9 pwsbas R Grp f 0 I | f -1 Fin V Base R f 0 I | f -1 Fin = Base R 𝑠 f 0 I | f -1 Fin
11 3 5 10 sylancl φ Base R f 0 I | f -1 Fin = Base R 𝑠 f 0 I | f -1 Fin
12 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
13 eqid Base S = Base S
14 1 9 12 13 2 psrbas φ Base S = Base R f 0 I | f -1 Fin
15 14 eqcomd φ Base R f 0 I | f -1 Fin = Base S
16 eqid Base R 𝑠 f 0 I | f -1 Fin = Base R 𝑠 f 0 I | f -1 Fin
17 3 adantr φ x Base R f 0 I | f -1 Fin y Base R f 0 I | f -1 Fin R Grp
18 5 a1i φ x Base R f 0 I | f -1 Fin y Base R f 0 I | f -1 Fin f 0 I | f -1 Fin V
19 11 eleq2d φ x Base R f 0 I | f -1 Fin x Base R 𝑠 f 0 I | f -1 Fin
20 19 biimpa φ x Base R f 0 I | f -1 Fin x Base R 𝑠 f 0 I | f -1 Fin
21 20 adantrr φ x Base R f 0 I | f -1 Fin y Base R f 0 I | f -1 Fin x Base R 𝑠 f 0 I | f -1 Fin
22 11 eleq2d φ y Base R f 0 I | f -1 Fin y Base R 𝑠 f 0 I | f -1 Fin
23 22 biimpa φ y Base R f 0 I | f -1 Fin y Base R 𝑠 f 0 I | f -1 Fin
24 23 adantrl φ x Base R f 0 I | f -1 Fin y Base R f 0 I | f -1 Fin y Base R 𝑠 f 0 I | f -1 Fin
25 eqid + R = + R
26 eqid + R 𝑠 f 0 I | f -1 Fin = + R 𝑠 f 0 I | f -1 Fin
27 6 16 17 18 21 24 25 26 pwsplusgval φ x Base R f 0 I | f -1 Fin y Base R f 0 I | f -1 Fin x + R 𝑠 f 0 I | f -1 Fin y = x + R f y
28 eqid + S = + S
29 14 eleq2d φ x Base S x Base R f 0 I | f -1 Fin
30 29 biimpar φ x Base R f 0 I | f -1 Fin x Base S
31 30 adantrr φ x Base R f 0 I | f -1 Fin y Base R f 0 I | f -1 Fin x Base S
32 14 eleq2d φ y Base S y Base R f 0 I | f -1 Fin
33 32 biimpar φ y Base R f 0 I | f -1 Fin y Base S
34 33 adantrl φ x Base R f 0 I | f -1 Fin y Base R f 0 I | f -1 Fin y Base S
35 1 13 25 28 31 34 psradd φ x Base R f 0 I | f -1 Fin y Base R f 0 I | f -1 Fin x + S y = x + R f y
36 27 35 eqtr4d φ x Base R f 0 I | f -1 Fin y Base R f 0 I | f -1 Fin x + R 𝑠 f 0 I | f -1 Fin y = x + S y
37 11 15 36 grppropd φ R 𝑠 f 0 I | f -1 Fin Grp S Grp
38 8 37 mpbid φ S Grp