Metamath Proof Explorer


Theorem psrgrp

Description: The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s S = I mPwSer R
psrgrp.i φ I V
psrgrp.r φ R Grp
Assertion psrgrp φ S Grp

Proof

Step Hyp Ref Expression
1 psrgrp.s S = I mPwSer R
2 psrgrp.i φ I V
3 psrgrp.r φ R Grp
4 eqidd φ Base S = Base S
5 eqidd φ + S = + S
6 eqid Base S = Base S
7 eqid + S = + S
8 3 3ad2ant1 φ x Base S y Base S R Grp
9 simp2 φ x Base S y Base S x Base S
10 simp3 φ x Base S y Base S y Base S
11 1 6 7 8 9 10 psraddcl φ x Base S y Base S x + S y Base S
12 ovex 0 I V
13 12 rabex f 0 I | f -1 Fin V
14 13 a1i φ x Base S y Base S z Base S f 0 I | f -1 Fin V
15 eqid Base R = Base R
16 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
17 simpr1 φ x Base S y Base S z Base S x Base S
18 1 15 16 6 17 psrelbas φ x Base S y Base S z Base S x : f 0 I | f -1 Fin Base R
19 simpr2 φ x Base S y Base S z Base S y Base S
20 1 15 16 6 19 psrelbas φ x Base S y Base S z Base S y : f 0 I | f -1 Fin Base R
21 simpr3 φ x Base S y Base S z Base S z Base S
22 1 15 16 6 21 psrelbas φ x Base S y Base S z Base S z : f 0 I | f -1 Fin Base R
23 3 adantr φ x Base S y Base S z Base S R Grp
24 eqid + R = + R
25 15 24 grpass R Grp r Base R s Base R t Base R r + R s + R t = r + R s + R t
26 23 25 sylan φ x Base S y Base S z Base S r Base R s Base R t Base R r + R s + R t = r + R s + R t
27 14 18 20 22 26 caofass φ x Base S y Base S z Base S x + R f y + R f z = x + R f y + R f z
28 1 6 24 7 17 19 psradd φ x Base S y Base S z Base S x + S y = x + R f y
29 28 oveq1d φ x Base S y Base S z Base S x + S y + R f z = x + R f y + R f z
30 1 6 24 7 19 21 psradd φ x Base S y Base S z Base S y + S z = y + R f z
31 30 oveq2d φ x Base S y Base S z Base S x + R f y + S z = x + R f y + R f z
32 27 29 31 3eqtr4d φ x Base S y Base S z Base S x + S y + R f z = x + R f y + S z
33 11 3adant3r3 φ x Base S y Base S z Base S x + S y Base S
34 1 6 24 7 33 21 psradd φ x Base S y Base S z Base S x + S y + S z = x + S y + R f z
35 1 6 7 23 19 21 psraddcl φ x Base S y Base S z Base S y + S z Base S
36 1 6 24 7 17 35 psradd φ x Base S y Base S z Base S x + S y + S z = x + R f y + S z
37 32 34 36 3eqtr4d φ x Base S y Base S z Base S x + S y + S z = x + S y + S z
38 eqid 0 R = 0 R
39 1 2 3 16 38 6 psr0cl φ f 0 I | f -1 Fin × 0 R Base S
40 2 adantr φ x Base S I V
41 3 adantr φ x Base S R Grp
42 simpr φ x Base S x Base S
43 1 40 41 16 38 6 7 42 psr0lid φ x Base S f 0 I | f -1 Fin × 0 R + S x = x
44 eqid inv g R = inv g R
45 1 40 41 16 44 6 42 psrnegcl φ x Base S inv g R x Base S
46 1 40 41 16 44 6 42 38 7 psrlinv φ x Base S inv g R x + S x = f 0 I | f -1 Fin × 0 R
47 4 5 11 37 39 43 45 46 isgrpd φ S Grp