Step |
Hyp |
Ref |
Expression |
1 |
|
psrgrp.s |
|
2 |
|
psrgrp.i |
|
3 |
|
psrgrp.r |
|
4 |
|
eqidd |
|
5 |
|
eqidd |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
3
|
grpmgmd |
|
9 |
8
|
3ad2ant1 |
|
10 |
|
simp2 |
|
11 |
|
simp3 |
|
12 |
1 6 7 9 10 11
|
psraddcl |
|
13 |
|
ovex |
|
14 |
13
|
rabex |
|
15 |
14
|
a1i |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
|
simpr1 |
|
19 |
1 16 17 6 18
|
psrelbas |
|
20 |
|
simpr2 |
|
21 |
1 16 17 6 20
|
psrelbas |
|
22 |
|
simpr3 |
|
23 |
1 16 17 6 22
|
psrelbas |
|
24 |
3
|
adantr |
|
25 |
|
eqid |
|
26 |
16 25
|
grpass |
|
27 |
24 26
|
sylan |
|
28 |
15 19 21 23 27
|
caofass |
|
29 |
1 6 25 7 18 20
|
psradd |
|
30 |
29
|
oveq1d |
|
31 |
1 6 25 7 20 22
|
psradd |
|
32 |
31
|
oveq2d |
|
33 |
28 30 32
|
3eqtr4d |
|
34 |
12
|
3adant3r3 |
|
35 |
1 6 25 7 34 22
|
psradd |
|
36 |
8
|
adantr |
|
37 |
1 6 7 36 20 22
|
psraddcl |
|
38 |
1 6 25 7 18 37
|
psradd |
|
39 |
33 35 38
|
3eqtr4d |
|
40 |
|
eqid |
|
41 |
1 2 3 17 40 6
|
psr0cl |
|
42 |
2
|
adantr |
|
43 |
3
|
adantr |
|
44 |
|
simpr |
|
45 |
1 42 43 17 40 6 7 44
|
psr0lid |
|
46 |
|
eqid |
|
47 |
1 42 43 17 46 6 44
|
psrnegcl |
|
48 |
1 42 43 17 46 6 44 40 7
|
psrlinv |
|
49 |
4 5 12 39 41 45 47 48
|
isgrpd |
|