Metamath Proof Explorer


Theorem psrgrpOLD

Description: Obsolete proof of psrgrp as of 7-Feb-2025. (Contributed by Mario Carneiro, 29-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses psrgrp.s S = I mPwSer R
psrgrp.i φ I V
psrgrp.r φ R Grp
Assertion psrgrpOLD φ S Grp

Proof

Step Hyp Ref Expression
1 psrgrp.s S = I mPwSer R
2 psrgrp.i φ I V
3 psrgrp.r φ R Grp
4 eqidd φ Base S = Base S
5 eqidd φ + S = + S
6 eqid Base S = Base S
7 eqid + S = + S
8 3 grpmgmd φ R Mgm
9 8 3ad2ant1 φ x Base S y Base S R Mgm
10 simp2 φ x Base S y Base S x Base S
11 simp3 φ x Base S y Base S y Base S
12 1 6 7 9 10 11 psraddcl φ x Base S y Base S x + S y Base S
13 ovex 0 I V
14 13 rabex f 0 I | f -1 Fin V
15 14 a1i φ x Base S y Base S z Base S f 0 I | f -1 Fin V
16 eqid Base R = Base R
17 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
18 simpr1 φ x Base S y Base S z Base S x Base S
19 1 16 17 6 18 psrelbas φ x Base S y Base S z Base S x : f 0 I | f -1 Fin Base R
20 simpr2 φ x Base S y Base S z Base S y Base S
21 1 16 17 6 20 psrelbas φ x Base S y Base S z Base S y : f 0 I | f -1 Fin Base R
22 simpr3 φ x Base S y Base S z Base S z Base S
23 1 16 17 6 22 psrelbas φ x Base S y Base S z Base S z : f 0 I | f -1 Fin Base R
24 3 adantr φ x Base S y Base S z Base S R Grp
25 eqid + R = + R
26 16 25 grpass R Grp r Base R s Base R t Base R r + R s + R t = r + R s + R t
27 24 26 sylan φ x Base S y Base S z Base S r Base R s Base R t Base R r + R s + R t = r + R s + R t
28 15 19 21 23 27 caofass φ x Base S y Base S z Base S x + R f y + R f z = x + R f y + R f z
29 1 6 25 7 18 20 psradd φ x Base S y Base S z Base S x + S y = x + R f y
30 29 oveq1d φ x Base S y Base S z Base S x + S y + R f z = x + R f y + R f z
31 1 6 25 7 20 22 psradd φ x Base S y Base S z Base S y + S z = y + R f z
32 31 oveq2d φ x Base S y Base S z Base S x + R f y + S z = x + R f y + R f z
33 28 30 32 3eqtr4d φ x Base S y Base S z Base S x + S y + R f z = x + R f y + S z
34 12 3adant3r3 φ x Base S y Base S z Base S x + S y Base S
35 1 6 25 7 34 22 psradd φ x Base S y Base S z Base S x + S y + S z = x + S y + R f z
36 8 adantr φ x Base S y Base S z Base S R Mgm
37 1 6 7 36 20 22 psraddcl φ x Base S y Base S z Base S y + S z Base S
38 1 6 25 7 18 37 psradd φ x Base S y Base S z Base S x + S y + S z = x + R f y + S z
39 33 35 38 3eqtr4d φ x Base S y Base S z Base S x + S y + S z = x + S y + S z
40 eqid 0 R = 0 R
41 1 2 3 17 40 6 psr0cl φ f 0 I | f -1 Fin × 0 R Base S
42 2 adantr φ x Base S I V
43 3 adantr φ x Base S R Grp
44 simpr φ x Base S x Base S
45 1 42 43 17 40 6 7 44 psr0lid φ x Base S f 0 I | f -1 Fin × 0 R + S x = x
46 eqid inv g R = inv g R
47 1 42 43 17 46 6 44 psrnegcl φ x Base S inv g R x Base S
48 1 42 43 17 46 6 44 40 7 psrlinv φ x Base S inv g R x + S x = f 0 I | f -1 Fin × 0 R
49 4 5 12 39 41 45 47 48 isgrpd φ S Grp