Step |
Hyp |
Ref |
Expression |
1 |
|
psrring.s |
|
2 |
|
psrring.i |
|
3 |
|
psrring.r |
|
4 |
|
psr1cl.d |
|
5 |
|
psr1cl.z |
|
6 |
|
psr1cl.o |
|
7 |
|
psr1cl.u |
|
8 |
|
psr1cl.b |
|
9 |
|
psrlidm.t |
|
10 |
|
psrlidm.x |
|
11 |
|
eqid |
|
12 |
1 2 3 4 5 6 7 8
|
psr1cl |
|
13 |
1 8 9 3 12 10
|
psrmulcl |
|
14 |
1 11 4 8 13
|
psrelbas |
|
15 |
14
|
ffnd |
|
16 |
1 11 4 8 10
|
psrelbas |
|
17 |
16
|
ffnd |
|
18 |
|
eqid |
|
19 |
12
|
adantr |
|
20 |
10
|
adantr |
|
21 |
|
simpr |
|
22 |
1 8 18 9 4 19 20 21
|
psrmulval |
|
23 |
|
breq1 |
|
24 |
|
fconstmpt |
|
25 |
4
|
fczpsrbag |
|
26 |
2 25
|
syl |
|
27 |
24 26
|
eqeltrid |
|
28 |
27
|
adantr |
|
29 |
4
|
psrbagf |
|
30 |
29
|
adantl |
|
31 |
30
|
ffvelrnda |
|
32 |
31
|
nn0ge0d |
|
33 |
32
|
ralrimiva |
|
34 |
|
0nn0 |
|
35 |
34
|
fconst6 |
|
36 |
|
ffn |
|
37 |
35 36
|
mp1i |
|
38 |
30
|
ffnd |
|
39 |
2
|
adantr |
|
40 |
|
inidm |
|
41 |
34
|
a1i |
|
42 |
|
fvconst2g |
|
43 |
41 42
|
sylan |
|
44 |
|
eqidd |
|
45 |
37 38 39 39 40 43 44
|
ofrfval |
|
46 |
33 45
|
mpbird |
|
47 |
23 28 46
|
elrabd |
|
48 |
47
|
snssd |
|
49 |
48
|
resmptd |
|
50 |
49
|
oveq2d |
|
51 |
|
ringcmn |
|
52 |
3 51
|
syl |
|
53 |
52
|
adantr |
|
54 |
|
ovex |
|
55 |
4 54
|
rab2ex |
|
56 |
55
|
a1i |
|
57 |
3
|
ad2antrr |
|
58 |
|
simpr |
|
59 |
|
breq1 |
|
60 |
59
|
elrab |
|
61 |
58 60
|
sylib |
|
62 |
61
|
simpld |
|
63 |
1 11 4 8 19
|
psrelbas |
|
64 |
63
|
ffvelrnda |
|
65 |
62 64
|
syldan |
|
66 |
16
|
ad2antrr |
|
67 |
21
|
adantr |
|
68 |
4
|
psrbagf |
|
69 |
62 68
|
syl |
|
70 |
61
|
simprd |
|
71 |
4
|
psrbagcon |
|
72 |
67 69 70 71
|
syl3anc |
|
73 |
72
|
simpld |
|
74 |
66 73
|
ffvelrnd |
|
75 |
11 18
|
ringcl |
|
76 |
57 65 74 75
|
syl3anc |
|
77 |
76
|
fmpttd |
|
78 |
|
eldifi |
|
79 |
78 61
|
sylan2 |
|
80 |
79
|
simpld |
|
81 |
|
eqeq1 |
|
82 |
81
|
ifbid |
|
83 |
6
|
fvexi |
|
84 |
5
|
fvexi |
|
85 |
83 84
|
ifex |
|
86 |
82 7 85
|
fvmpt |
|
87 |
80 86
|
syl |
|
88 |
|
eldifn |
|
89 |
88
|
adantl |
|
90 |
|
velsn |
|
91 |
89 90
|
sylnib |
|
92 |
91
|
iffalsed |
|
93 |
87 92
|
eqtrd |
|
94 |
93
|
oveq1d |
|
95 |
3
|
ad2antrr |
|
96 |
78 74
|
sylan2 |
|
97 |
11 18 5
|
ringlz |
|
98 |
95 96 97
|
syl2anc |
|
99 |
94 98
|
eqtrd |
|
100 |
99 56
|
suppss2 |
|
101 |
4 54
|
rabex2 |
|
102 |
101
|
mptrabex |
|
103 |
102
|
a1i |
|
104 |
|
funmpt |
|
105 |
104
|
a1i |
|
106 |
84
|
a1i |
|
107 |
|
snfi |
|
108 |
107
|
a1i |
|
109 |
|
suppssfifsupp |
|
110 |
103 105 106 108 100 109
|
syl32anc |
|
111 |
11 5 53 56 77 100 110
|
gsumres |
|
112 |
3
|
adantr |
|
113 |
|
ringmnd |
|
114 |
112 113
|
syl |
|
115 |
|
iftrue |
|
116 |
115 7 83
|
fvmpt |
|
117 |
28 116
|
syl |
|
118 |
|
nn0cn |
|
119 |
118
|
subid1d |
|
120 |
119
|
adantl |
|
121 |
39 30 41 120
|
caofid0r |
|
122 |
121
|
fveq2d |
|
123 |
117 122
|
oveq12d |
|
124 |
16
|
ffvelrnda |
|
125 |
11 18 6
|
ringlidm |
|
126 |
112 124 125
|
syl2anc |
|
127 |
123 126
|
eqtrd |
|
128 |
127 124
|
eqeltrd |
|
129 |
|
fveq2 |
|
130 |
|
oveq2 |
|
131 |
130
|
fveq2d |
|
132 |
129 131
|
oveq12d |
|
133 |
11 132
|
gsumsn |
|
134 |
114 28 128 133
|
syl3anc |
|
135 |
50 111 134
|
3eqtr3d |
|
136 |
22 135 127
|
3eqtrd |
|
137 |
15 17 136
|
eqfnfvd |
|