Metamath Proof Explorer


Theorem psrlinv

Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s S = I mPwSer R
psrgrp.i φ I V
psrgrp.r φ R Grp
psrnegcl.d D = f 0 I | f -1 Fin
psrnegcl.i N = inv g R
psrnegcl.b B = Base S
psrnegcl.z φ X B
psrlinv.o 0 ˙ = 0 R
psrlinv.p + ˙ = + S
Assertion psrlinv φ N X + ˙ X = D × 0 ˙

Proof

Step Hyp Ref Expression
1 psrgrp.s S = I mPwSer R
2 psrgrp.i φ I V
3 psrgrp.r φ R Grp
4 psrnegcl.d D = f 0 I | f -1 Fin
5 psrnegcl.i N = inv g R
6 psrnegcl.b B = Base S
7 psrnegcl.z φ X B
8 psrlinv.o 0 ˙ = 0 R
9 psrlinv.p + ˙ = + S
10 ovex 0 I V
11 4 10 rabex2 D V
12 11 a1i φ D V
13 fvexd φ x D N X x V
14 eqid Base R = Base R
15 1 14 4 6 7 psrelbas φ X : D Base R
16 15 ffvelrnda φ x D X x Base R
17 15 feqmptd φ X = x D X x
18 14 5 3 grpinvf1o φ N : Base R 1-1 onto Base R
19 f1of N : Base R 1-1 onto Base R N : Base R Base R
20 18 19 syl φ N : Base R Base R
21 20 feqmptd φ N = y Base R N y
22 fveq2 y = X x N y = N X x
23 16 17 21 22 fmptco φ N X = x D N X x
24 12 13 16 23 17 offval2 φ N X + R f X = x D N X x + R X x
25 eqid + R = + R
26 1 2 3 4 5 6 7 psrnegcl φ N X B
27 1 6 25 9 26 7 psradd φ N X + ˙ X = N X + R f X
28 fconstmpt D × 0 ˙ = x D 0 ˙
29 14 25 8 5 grplinv R Grp X x Base R N X x + R X x = 0 ˙
30 3 16 29 syl2an2r φ x D N X x + R X x = 0 ˙
31 30 mpteq2dva φ x D N X x + R X x = x D 0 ˙
32 28 31 eqtr4id φ D × 0 ˙ = x D N X x + R X x
33 24 27 32 3eqtr4d φ N X + ˙ X = D × 0 ˙