Metamath Proof Explorer


Theorem psrlmod

Description: The ring of power series is a left module. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrring.s S=ImPwSerR
psrring.i φIV
psrring.r φRRing
Assertion psrlmod φSLMod

Proof

Step Hyp Ref Expression
1 psrring.s S=ImPwSerR
2 psrring.i φIV
3 psrring.r φRRing
4 eqidd φBaseS=BaseS
5 eqidd φ+S=+S
6 1 2 3 psrsca φR=ScalarS
7 eqidd φS=S
8 eqidd φBaseR=BaseR
9 eqidd φ+R=+R
10 eqidd φR=R
11 eqidd φ1R=1R
12 ringgrp RRingRGrp
13 3 12 syl φRGrp
14 1 2 13 psrgrp φSGrp
15 eqid S=S
16 eqid BaseR=BaseR
17 eqid BaseS=BaseS
18 3 3ad2ant1 φxBaseRyBaseSRRing
19 simp2 φxBaseRyBaseSxBaseR
20 simp3 φxBaseRyBaseSyBaseS
21 1 15 16 17 18 19 20 psrvscacl φxBaseRyBaseSxSyBaseS
22 ovex 0IV
23 22 rabex f0I|f-1FinV
24 23 a1i φxBaseRyBaseSzBaseSf0I|f-1FinV
25 simpr1 φxBaseRyBaseSzBaseSxBaseR
26 fconst6g xBaseRf0I|f-1Fin×x:f0I|f-1FinBaseR
27 25 26 syl φxBaseRyBaseSzBaseSf0I|f-1Fin×x:f0I|f-1FinBaseR
28 eqid f0I|f-1Fin=f0I|f-1Fin
29 simpr2 φxBaseRyBaseSzBaseSyBaseS
30 1 16 28 17 29 psrelbas φxBaseRyBaseSzBaseSy:f0I|f-1FinBaseR
31 simpr3 φxBaseRyBaseSzBaseSzBaseS
32 1 16 28 17 31 psrelbas φxBaseRyBaseSzBaseSz:f0I|f-1FinBaseR
33 3 adantr φxBaseRyBaseSzBaseSRRing
34 eqid +R=+R
35 eqid R=R
36 16 34 35 ringdi RRingrBaseRsBaseRtBaseRrRs+Rt=rRs+RrRt
37 33 36 sylan φxBaseRyBaseSzBaseSrBaseRsBaseRtBaseRrRs+Rt=rRs+RrRt
38 24 27 30 32 37 caofdi φxBaseRyBaseSzBaseSf0I|f-1Fin×xRfy+Rfz=f0I|f-1Fin×xRfy+Rff0I|f-1Fin×xRfz
39 eqid +S=+S
40 1 17 34 39 29 31 psradd φxBaseRyBaseSzBaseSy+Sz=y+Rfz
41 40 oveq2d φxBaseRyBaseSzBaseSf0I|f-1Fin×xRfy+Sz=f0I|f-1Fin×xRfy+Rfz
42 1 15 16 17 35 28 25 29 psrvsca φxBaseRyBaseSzBaseSxSy=f0I|f-1Fin×xRfy
43 1 15 16 17 35 28 25 31 psrvsca φxBaseRyBaseSzBaseSxSz=f0I|f-1Fin×xRfz
44 42 43 oveq12d φxBaseRyBaseSzBaseSxSy+RfxSz=f0I|f-1Fin×xRfy+Rff0I|f-1Fin×xRfz
45 38 41 44 3eqtr4d φxBaseRyBaseSzBaseSf0I|f-1Fin×xRfy+Sz=xSy+RfxSz
46 13 grpmgmd φRMgm
47 46 adantr φxBaseRyBaseSzBaseSRMgm
48 1 17 39 47 29 31 psraddcl φxBaseRyBaseSzBaseSy+SzBaseS
49 1 15 16 17 35 28 25 48 psrvsca φxBaseRyBaseSzBaseSxSy+Sz=f0I|f-1Fin×xRfy+Sz
50 21 3adant3r3 φxBaseRyBaseSzBaseSxSyBaseS
51 1 15 16 17 33 25 31 psrvscacl φxBaseRyBaseSzBaseSxSzBaseS
52 1 17 34 39 50 51 psradd φxBaseRyBaseSzBaseSxSy+SxSz=xSy+RfxSz
53 45 49 52 3eqtr4d φxBaseRyBaseSzBaseSxSy+Sz=xSy+SxSz
54 simpr1 φxBaseRyBaseRzBaseSxBaseR
55 simpr3 φxBaseRyBaseRzBaseSzBaseS
56 1 15 16 17 35 28 54 55 psrvsca φxBaseRyBaseRzBaseSxSz=f0I|f-1Fin×xRfz
57 simpr2 φxBaseRyBaseRzBaseSyBaseR
58 1 15 16 17 35 28 57 55 psrvsca φxBaseRyBaseRzBaseSySz=f0I|f-1Fin×yRfz
59 56 58 oveq12d φxBaseRyBaseRzBaseSxSz+RfySz=f0I|f-1Fin×xRfz+Rff0I|f-1Fin×yRfz
60 23 a1i φxBaseRyBaseRzBaseSf0I|f-1FinV
61 1 16 28 17 55 psrelbas φxBaseRyBaseRzBaseSz:f0I|f-1FinBaseR
62 54 26 syl φxBaseRyBaseRzBaseSf0I|f-1Fin×x:f0I|f-1FinBaseR
63 fconst6g yBaseRf0I|f-1Fin×y:f0I|f-1FinBaseR
64 57 63 syl φxBaseRyBaseRzBaseSf0I|f-1Fin×y:f0I|f-1FinBaseR
65 3 adantr φxBaseRyBaseRzBaseSRRing
66 16 34 35 ringdir RRingrBaseRsBaseRtBaseRr+RsRt=rRt+RsRt
67 65 66 sylan φxBaseRyBaseRzBaseSrBaseRsBaseRtBaseRr+RsRt=rRt+RsRt
68 60 61 62 64 67 caofdir φxBaseRyBaseRzBaseSf0I|f-1Fin×x+Rff0I|f-1Fin×yRfz=f0I|f-1Fin×xRfz+Rff0I|f-1Fin×yRfz
69 60 54 57 ofc12 φxBaseRyBaseRzBaseSf0I|f-1Fin×x+Rff0I|f-1Fin×y=f0I|f-1Fin×x+Ry
70 69 oveq1d φxBaseRyBaseRzBaseSf0I|f-1Fin×x+Rff0I|f-1Fin×yRfz=f0I|f-1Fin×x+RyRfz
71 59 68 70 3eqtr2rd φxBaseRyBaseRzBaseSf0I|f-1Fin×x+RyRfz=xSz+RfySz
72 16 34 ringacl RRingxBaseRyBaseRx+RyBaseR
73 65 54 57 72 syl3anc φxBaseRyBaseRzBaseSx+RyBaseR
74 1 15 16 17 35 28 73 55 psrvsca φxBaseRyBaseRzBaseSx+RySz=f0I|f-1Fin×x+RyRfz
75 1 15 16 17 65 54 55 psrvscacl φxBaseRyBaseRzBaseSxSzBaseS
76 1 15 16 17 65 57 55 psrvscacl φxBaseRyBaseRzBaseSySzBaseS
77 1 17 34 39 75 76 psradd φxBaseRyBaseRzBaseSxSz+SySz=xSz+RfySz
78 71 74 77 3eqtr4d φxBaseRyBaseRzBaseSx+RySz=xSz+SySz
79 58 oveq2d φxBaseRyBaseRzBaseSf0I|f-1Fin×xRfySz=f0I|f-1Fin×xRff0I|f-1Fin×yRfz
80 16 35 ringass RRingrBaseRsBaseRtBaseRrRsRt=rRsRt
81 65 80 sylan φxBaseRyBaseRzBaseSrBaseRsBaseRtBaseRrRsRt=rRsRt
82 60 62 64 61 81 caofass φxBaseRyBaseRzBaseSf0I|f-1Fin×xRff0I|f-1Fin×yRfz=f0I|f-1Fin×xRff0I|f-1Fin×yRfz
83 60 54 57 ofc12 φxBaseRyBaseRzBaseSf0I|f-1Fin×xRff0I|f-1Fin×y=f0I|f-1Fin×xRy
84 83 oveq1d φxBaseRyBaseRzBaseSf0I|f-1Fin×xRff0I|f-1Fin×yRfz=f0I|f-1Fin×xRyRfz
85 79 82 84 3eqtr2rd φxBaseRyBaseRzBaseSf0I|f-1Fin×xRyRfz=f0I|f-1Fin×xRfySz
86 16 35 ringcl RRingxBaseRyBaseRxRyBaseR
87 65 54 57 86 syl3anc φxBaseRyBaseRzBaseSxRyBaseR
88 1 15 16 17 35 28 87 55 psrvsca φxBaseRyBaseRzBaseSxRySz=f0I|f-1Fin×xRyRfz
89 1 15 16 17 35 28 54 76 psrvsca φxBaseRyBaseRzBaseSxSySz=f0I|f-1Fin×xRfySz
90 85 88 89 3eqtr4d φxBaseRyBaseRzBaseSxRySz=xSySz
91 3 adantr φxBaseSRRing
92 eqid 1R=1R
93 16 92 ringidcl RRing1RBaseR
94 91 93 syl φxBaseS1RBaseR
95 simpr φxBaseSxBaseS
96 1 15 16 17 35 28 94 95 psrvsca φxBaseS1RSx=f0I|f-1Fin×1RRfx
97 23 a1i φxBaseSf0I|f-1FinV
98 1 16 28 17 95 psrelbas φxBaseSx:f0I|f-1FinBaseR
99 16 35 92 ringlidm RRingrBaseR1RRr=r
100 91 99 sylan φxBaseSrBaseR1RRr=r
101 97 98 94 100 caofid0l φxBaseSf0I|f-1Fin×1RRfx=x
102 96 101 eqtrd φxBaseS1RSx=x
103 4 5 6 7 8 9 10 11 3 14 21 53 78 90 102 islmodd φSLMod