Metamath Proof Explorer


Theorem psrmulcl

Description: Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrmulcl.s S = I mPwSer R
psrmulcl.b B = Base S
psrmulcl.t · ˙ = S
psrmulcl.r φ R Ring
psrmulcl.x φ X B
psrmulcl.y φ Y B
Assertion psrmulcl φ X · ˙ Y B

Proof

Step Hyp Ref Expression
1 psrmulcl.s S = I mPwSer R
2 psrmulcl.b B = Base S
3 psrmulcl.t · ˙ = S
4 psrmulcl.r φ R Ring
5 psrmulcl.x φ X B
6 psrmulcl.y φ Y B
7 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
8 1 2 3 4 5 6 7 psrmulcllem φ X · ˙ Y B