Step |
Hyp |
Ref |
Expression |
1 |
|
psrmulcl.s |
|
2 |
|
psrmulcl.b |
|
3 |
|
psrmulcl.t |
|
4 |
|
psrmulcl.r |
|
5 |
|
psrmulcl.x |
|
6 |
|
psrmulcl.y |
|
7 |
|
psrmulcl.d |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
4
|
adantr |
|
11 |
10
|
ringcmnd |
|
12 |
7
|
psrbaglefi |
|
13 |
12
|
adantl |
|
14 |
|
eqid |
|
15 |
4
|
ad2antrr |
|
16 |
1 8 7 2 5
|
psrelbas |
|
17 |
16
|
ad2antrr |
|
18 |
|
simpr |
|
19 |
|
breq1 |
|
20 |
19
|
elrab |
|
21 |
18 20
|
sylib |
|
22 |
21
|
simpld |
|
23 |
17 22
|
ffvelcdmd |
|
24 |
1 8 7 2 6
|
psrelbas |
|
25 |
24
|
ad2antrr |
|
26 |
|
simplr |
|
27 |
7
|
psrbagf |
|
28 |
22 27
|
syl |
|
29 |
21
|
simprd |
|
30 |
7
|
psrbagcon |
|
31 |
26 28 29 30
|
syl3anc |
|
32 |
31
|
simpld |
|
33 |
25 32
|
ffvelcdmd |
|
34 |
8 14 15 23 33
|
ringcld |
|
35 |
34
|
fmpttd |
|
36 |
|
fvexd |
|
37 |
35 13 36
|
fdmfifsupp |
|
38 |
8 9 11 13 35 37
|
gsumcl |
|
39 |
38
|
fmpttd |
|
40 |
|
fvex |
|
41 |
|
ovex |
|
42 |
7 41
|
rabex2 |
|
43 |
40 42
|
elmap |
|
44 |
39 43
|
sylibr |
|
45 |
1 2 14 3 7 5 6
|
psrmulfval |
|
46 |
|
reldmpsr |
|
47 |
46 1 2
|
elbasov |
|
48 |
5 47
|
syl |
|
49 |
48
|
simpld |
|
50 |
1 8 7 2 49
|
psrbas |
|
51 |
44 45 50
|
3eltr4d |
|