Metamath Proof Explorer


Theorem psrneg

Description: The negative function of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s S = I mPwSer R
psrgrp.i φ I V
psrgrp.r φ R Grp
psrneg.d D = f 0 I | f -1 Fin
psrneg.i N = inv g R
psrneg.b B = Base S
psrneg.m M = inv g S
psrneg.x φ X B
Assertion psrneg φ M X = N X

Proof

Step Hyp Ref Expression
1 psrgrp.s S = I mPwSer R
2 psrgrp.i φ I V
3 psrgrp.r φ R Grp
4 psrneg.d D = f 0 I | f -1 Fin
5 psrneg.i N = inv g R
6 psrneg.b B = Base S
7 psrneg.m M = inv g S
8 psrneg.x φ X B
9 eqid 0 R = 0 R
10 eqid + S = + S
11 1 2 3 4 5 6 8 9 10 psrlinv φ N X + S X = D × 0 R
12 eqid 0 S = 0 S
13 1 2 3 4 9 12 psr0 φ 0 S = D × 0 R
14 11 13 eqtr4d φ N X + S X = 0 S
15 1 2 3 psrgrp φ S Grp
16 1 2 3 4 5 6 8 psrnegcl φ N X B
17 6 10 12 7 grpinvid2 S Grp X B N X B M X = N X N X + S X = 0 S
18 15 8 16 17 syl3anc φ M X = N X N X + S X = 0 S
19 14 18 mpbird φ M X = N X