Metamath Proof Explorer


Theorem psrnegcl

Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s S = I mPwSer R
psrgrp.i φ I V
psrgrp.r φ R Grp
psrnegcl.d D = f 0 I | f -1 Fin
psrnegcl.i N = inv g R
psrnegcl.b B = Base S
psrnegcl.z φ X B
Assertion psrnegcl φ N X B

Proof

Step Hyp Ref Expression
1 psrgrp.s S = I mPwSer R
2 psrgrp.i φ I V
3 psrgrp.r φ R Grp
4 psrnegcl.d D = f 0 I | f -1 Fin
5 psrnegcl.i N = inv g R
6 psrnegcl.b B = Base S
7 psrnegcl.z φ X B
8 eqid Base R = Base R
9 8 5 3 grpinvf1o φ N : Base R 1-1 onto Base R
10 f1of N : Base R 1-1 onto Base R N : Base R Base R
11 9 10 syl φ N : Base R Base R
12 1 8 4 6 7 psrelbas φ X : D Base R
13 fco N : Base R Base R X : D Base R N X : D Base R
14 11 12 13 syl2anc φ N X : D Base R
15 fvex Base R V
16 ovex 0 I V
17 4 16 rabex2 D V
18 15 17 elmap N X Base R D N X : D Base R
19 14 18 sylibr φ N X Base R D
20 1 8 4 6 2 psrbas φ B = Base R D
21 19 20 eleqtrrd φ N X B