Metamath Proof Explorer


Theorem psropprmul

Description: Reversing multiplication in a ring reverses multiplication in the power series ring. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses psropprmul.y Y = I mPwSer R
psropprmul.s S = opp r R
psropprmul.z Z = I mPwSer S
psropprmul.t · ˙ = Y
psropprmul.u ˙ = Z
psropprmul.b B = Base Y
Assertion psropprmul R Ring F B G B F ˙ G = G · ˙ F

Proof

Step Hyp Ref Expression
1 psropprmul.y Y = I mPwSer R
2 psropprmul.s S = opp r R
3 psropprmul.z Z = I mPwSer S
4 psropprmul.t · ˙ = Y
5 psropprmul.u ˙ = Z
6 psropprmul.b B = Base Y
7 eqid Base R = Base R
8 eqid 0 R = 0 R
9 ringcmn R Ring R CMnd
10 9 3ad2ant1 R Ring F B G B R CMnd
11 10 adantr R Ring F B G B b a 0 I | a -1 Fin R CMnd
12 ovex 0 I V
13 12 rabex a 0 I | a -1 Fin V
14 13 rabex d a 0 I | a -1 Fin | d f b V
15 14 a1i R Ring F B G B b a 0 I | a -1 Fin d a 0 I | a -1 Fin | d f b V
16 simpll1 R Ring F B G B b a 0 I | a -1 Fin e d a 0 I | a -1 Fin | d f b R Ring
17 eqid a 0 I | a -1 Fin = a 0 I | a -1 Fin
18 simp3 R Ring F B G B G B
19 1 7 17 6 18 psrelbas R Ring F B G B G : a 0 I | a -1 Fin Base R
20 19 adantr R Ring F B G B b a 0 I | a -1 Fin G : a 0 I | a -1 Fin Base R
21 elrabi e d a 0 I | a -1 Fin | d f b e a 0 I | a -1 Fin
22 ffvelrn G : a 0 I | a -1 Fin Base R e a 0 I | a -1 Fin G e Base R
23 20 21 22 syl2an R Ring F B G B b a 0 I | a -1 Fin e d a 0 I | a -1 Fin | d f b G e Base R
24 simp2 R Ring F B G B F B
25 1 7 17 6 24 psrelbas R Ring F B G B F : a 0 I | a -1 Fin Base R
26 25 ad2antrr R Ring F B G B b a 0 I | a -1 Fin e d a 0 I | a -1 Fin | d f b F : a 0 I | a -1 Fin Base R
27 ssrab2 d a 0 I | a -1 Fin | d f b a 0 I | a -1 Fin
28 eqid d a 0 I | a -1 Fin | d f b = d a 0 I | a -1 Fin | d f b
29 17 28 psrbagconcl b a 0 I | a -1 Fin e d a 0 I | a -1 Fin | d f b b f e d a 0 I | a -1 Fin | d f b
30 29 adantll R Ring F B G B b a 0 I | a -1 Fin e d a 0 I | a -1 Fin | d f b b f e d a 0 I | a -1 Fin | d f b
31 27 30 sselid R Ring F B G B b a 0 I | a -1 Fin e d a 0 I | a -1 Fin | d f b b f e a 0 I | a -1 Fin
32 26 31 ffvelrnd R Ring F B G B b a 0 I | a -1 Fin e d a 0 I | a -1 Fin | d f b F b f e Base R
33 eqid R = R
34 7 33 ringcl R Ring G e Base R F b f e Base R G e R F b f e Base R
35 16 23 32 34 syl3anc R Ring F B G B b a 0 I | a -1 Fin e d a 0 I | a -1 Fin | d f b G e R F b f e Base R
36 35 fmpttd R Ring F B G B b a 0 I | a -1 Fin e d a 0 I | a -1 Fin | d f b G e R F b f e : d a 0 I | a -1 Fin | d f b Base R
37 mptexg d a 0 I | a -1 Fin | d f b V e d a 0 I | a -1 Fin | d f b G e R F b f e V
38 14 37 mp1i R Ring F B G B b a 0 I | a -1 Fin e d a 0 I | a -1 Fin | d f b G e R F b f e V
39 funmpt Fun e d a 0 I | a -1 Fin | d f b G e R F b f e
40 39 a1i R Ring F B G B b a 0 I | a -1 Fin Fun e d a 0 I | a -1 Fin | d f b G e R F b f e
41 fvexd R Ring F B G B b a 0 I | a -1 Fin 0 R V
42 17 psrbaglefi b a 0 I | a -1 Fin d a 0 I | a -1 Fin | d f b Fin
43 42 adantl R Ring F B G B b a 0 I | a -1 Fin d a 0 I | a -1 Fin | d f b Fin
44 suppssdm e d a 0 I | a -1 Fin | d f b G e R F b f e supp 0 R dom e d a 0 I | a -1 Fin | d f b G e R F b f e
45 eqid e d a 0 I | a -1 Fin | d f b G e R F b f e = e d a 0 I | a -1 Fin | d f b G e R F b f e
46 45 dmmptss dom e d a 0 I | a -1 Fin | d f b G e R F b f e d a 0 I | a -1 Fin | d f b
47 44 46 sstri e d a 0 I | a -1 Fin | d f b G e R F b f e supp 0 R d a 0 I | a -1 Fin | d f b
48 47 a1i R Ring F B G B b a 0 I | a -1 Fin e d a 0 I | a -1 Fin | d f b G e R F b f e supp 0 R d a 0 I | a -1 Fin | d f b
49 suppssfifsupp e d a 0 I | a -1 Fin | d f b G e R F b f e V Fun e d a 0 I | a -1 Fin | d f b G e R F b f e 0 R V d a 0 I | a -1 Fin | d f b Fin e d a 0 I | a -1 Fin | d f b G e R F b f e supp 0 R d a 0 I | a -1 Fin | d f b finSupp 0 R e d a 0 I | a -1 Fin | d f b G e R F b f e
50 38 40 41 43 48 49 syl32anc R Ring F B G B b a 0 I | a -1 Fin finSupp 0 R e d a 0 I | a -1 Fin | d f b G e R F b f e
51 17 28 psrbagconf1o b a 0 I | a -1 Fin c d a 0 I | a -1 Fin | d f b b f c : d a 0 I | a -1 Fin | d f b 1-1 onto d a 0 I | a -1 Fin | d f b
52 51 adantl R Ring F B G B b a 0 I | a -1 Fin c d a 0 I | a -1 Fin | d f b b f c : d a 0 I | a -1 Fin | d f b 1-1 onto d a 0 I | a -1 Fin | d f b
53 7 8 11 15 36 50 52 gsumf1o R Ring F B G B b a 0 I | a -1 Fin R e d a 0 I | a -1 Fin | d f b G e R F b f e = R e d a 0 I | a -1 Fin | d f b G e R F b f e c d a 0 I | a -1 Fin | d f b b f c
54 17 28 psrbagconcl b a 0 I | a -1 Fin c d a 0 I | a -1 Fin | d f b b f c d a 0 I | a -1 Fin | d f b
55 54 adantll R Ring F B G B b a 0 I | a -1 Fin c d a 0 I | a -1 Fin | d f b b f c d a 0 I | a -1 Fin | d f b
56 eqidd R Ring F B G B b a 0 I | a -1 Fin c d a 0 I | a -1 Fin | d f b b f c = c d a 0 I | a -1 Fin | d f b b f c
57 eqidd R Ring F B G B b a 0 I | a -1 Fin e d a 0 I | a -1 Fin | d f b G e R F b f e = e d a 0 I | a -1 Fin | d f b G e R F b f e
58 fveq2 e = b f c G e = G b f c
59 oveq2 e = b f c b f e = b f b f c
60 59 fveq2d e = b f c F b f e = F b f b f c
61 58 60 oveq12d e = b f c G e R F b f e = G b f c R F b f b f c
62 55 56 57 61 fmptco R Ring F B G B b a 0 I | a -1 Fin e d a 0 I | a -1 Fin | d f b G e R F b f e c d a 0 I | a -1 Fin | d f b b f c = c d a 0 I | a -1 Fin | d f b G b f c R F b f b f c
63 reldmpsr Rel dom mPwSer
64 1 6 63 strov2rcl G B I V
65 64 3ad2ant3 R Ring F B G B I V
66 65 ad2antrr R Ring F B G B b a 0 I | a -1 Fin c d a 0 I | a -1 Fin | d f b I V
67 17 psrbagf b a 0 I | a -1 Fin b : I 0
68 67 adantl R Ring F B G B b a 0 I | a -1 Fin b : I 0
69 68 adantr R Ring F B G B b a 0 I | a -1 Fin c d a 0 I | a -1 Fin | d f b b : I 0
70 elrabi c d a 0 I | a -1 Fin | d f b c a 0 I | a -1 Fin
71 17 psrbagf c a 0 I | a -1 Fin c : I 0
72 70 71 syl c d a 0 I | a -1 Fin | d f b c : I 0
73 72 adantl R Ring F B G B b a 0 I | a -1 Fin c d a 0 I | a -1 Fin | d f b c : I 0
74 nn0cn e 0 e
75 nn0cn f 0 f
76 nncan e f e e f = f
77 74 75 76 syl2an e 0 f 0 e e f = f
78 77 adantl R Ring F B G B b a 0 I | a -1 Fin c d a 0 I | a -1 Fin | d f b e 0 f 0 e e f = f
79 66 69 73 78 caonncan R Ring F B G B b a 0 I | a -1 Fin c d a 0 I | a -1 Fin | d f b b f b f c = c
80 79 fveq2d R Ring F B G B b a 0 I | a -1 Fin c d a 0 I | a -1 Fin | d f b F b f b f c = F c
81 80 oveq2d R Ring F B G B b a 0 I | a -1 Fin c d a 0 I | a -1 Fin | d f b G b f c R F b f b f c = G b f c R F c
82 eqid S = S
83 7 33 2 82 opprmul F c S G b f c = G b f c R F c
84 81 83 eqtr4di R Ring F B G B b a 0 I | a -1 Fin c d a 0 I | a -1 Fin | d f b G b f c R F b f b f c = F c S G b f c
85 84 mpteq2dva R Ring F B G B b a 0 I | a -1 Fin c d a 0 I | a -1 Fin | d f b G b f c R F b f b f c = c d a 0 I | a -1 Fin | d f b F c S G b f c
86 62 85 eqtrd R Ring F B G B b a 0 I | a -1 Fin e d a 0 I | a -1 Fin | d f b G e R F b f e c d a 0 I | a -1 Fin | d f b b f c = c d a 0 I | a -1 Fin | d f b F c S G b f c
87 86 oveq2d R Ring F B G B b a 0 I | a -1 Fin R e d a 0 I | a -1 Fin | d f b G e R F b f e c d a 0 I | a -1 Fin | d f b b f c = R c d a 0 I | a -1 Fin | d f b F c S G b f c
88 14 mptex c d a 0 I | a -1 Fin | d f b F c S G b f c V
89 88 a1i R Ring c d a 0 I | a -1 Fin | d f b F c S G b f c V
90 id R Ring R Ring
91 2 fvexi S V
92 91 a1i R Ring S V
93 2 7 opprbas Base R = Base S
94 93 a1i R Ring Base R = Base S
95 eqid + R = + R
96 2 95 oppradd + R = + S
97 96 a1i R Ring + R = + S
98 89 90 92 94 97 gsumpropd R Ring R c d a 0 I | a -1 Fin | d f b F c S G b f c = S c d a 0 I | a -1 Fin | d f b F c S G b f c
99 98 3ad2ant1 R Ring F B G B R c d a 0 I | a -1 Fin | d f b F c S G b f c = S c d a 0 I | a -1 Fin | d f b F c S G b f c
100 99 adantr R Ring F B G B b a 0 I | a -1 Fin R c d a 0 I | a -1 Fin | d f b F c S G b f c = S c d a 0 I | a -1 Fin | d f b F c S G b f c
101 53 87 100 3eqtrd R Ring F B G B b a 0 I | a -1 Fin R e d a 0 I | a -1 Fin | d f b G e R F b f e = S c d a 0 I | a -1 Fin | d f b F c S G b f c
102 101 mpteq2dva R Ring F B G B b a 0 I | a -1 Fin R e d a 0 I | a -1 Fin | d f b G e R F b f e = b a 0 I | a -1 Fin S c d a 0 I | a -1 Fin | d f b F c S G b f c
103 1 6 33 4 17 18 24 psrmulfval R Ring F B G B G · ˙ F = b a 0 I | a -1 Fin R e d a 0 I | a -1 Fin | d f b G e R F b f e
104 eqid Base Z = Base Z
105 93 a1i R Ring F B G B Base R = Base S
106 105 psrbaspropd R Ring F B G B Base I mPwSer R = Base I mPwSer S
107 1 fveq2i Base Y = Base I mPwSer R
108 6 107 eqtri B = Base I mPwSer R
109 3 fveq2i Base Z = Base I mPwSer S
110 106 108 109 3eqtr4g R Ring F B G B B = Base Z
111 24 110 eleqtrd R Ring F B G B F Base Z
112 18 110 eleqtrd R Ring F B G B G Base Z
113 3 104 82 5 17 111 112 psrmulfval R Ring F B G B F ˙ G = b a 0 I | a -1 Fin S c d a 0 I | a -1 Fin | d f b F c S G b f c
114 102 103 113 3eqtr4rd R Ring F B G B F ˙ G = G · ˙ F