Metamath Proof Explorer


Theorem psrplusgpropd

Description: Property deduction for power series addition. (Contributed by Stefan O'Rear, 27-Mar-2015) (Revised by Mario Carneiro, 3-Oct-2015)

Ref Expression
Hypotheses psrplusgpropd.b1 φ B = Base R
psrplusgpropd.b2 φ B = Base S
psrplusgpropd.p φ x B y B x + R y = x + S y
Assertion psrplusgpropd φ + I mPwSer R = + I mPwSer S

Proof

Step Hyp Ref Expression
1 psrplusgpropd.b1 φ B = Base R
2 psrplusgpropd.b2 φ B = Base S
3 psrplusgpropd.p φ x B y B x + R y = x + S y
4 simpl1 φ a Base I mPwSer R b Base I mPwSer R d c 0 I | c -1 Fin φ
5 eqid I mPwSer R = I mPwSer R
6 eqid Base R = Base R
7 eqid c 0 I | c -1 Fin = c 0 I | c -1 Fin
8 eqid Base I mPwSer R = Base I mPwSer R
9 simp2 φ a Base I mPwSer R b Base I mPwSer R a Base I mPwSer R
10 5 6 7 8 9 psrelbas φ a Base I mPwSer R b Base I mPwSer R a : c 0 I | c -1 Fin Base R
11 10 ffvelrnda φ a Base I mPwSer R b Base I mPwSer R d c 0 I | c -1 Fin a d Base R
12 4 1 syl φ a Base I mPwSer R b Base I mPwSer R d c 0 I | c -1 Fin B = Base R
13 11 12 eleqtrrd φ a Base I mPwSer R b Base I mPwSer R d c 0 I | c -1 Fin a d B
14 simp3 φ a Base I mPwSer R b Base I mPwSer R b Base I mPwSer R
15 5 6 7 8 14 psrelbas φ a Base I mPwSer R b Base I mPwSer R b : c 0 I | c -1 Fin Base R
16 15 ffvelrnda φ a Base I mPwSer R b Base I mPwSer R d c 0 I | c -1 Fin b d Base R
17 16 12 eleqtrrd φ a Base I mPwSer R b Base I mPwSer R d c 0 I | c -1 Fin b d B
18 3 oveqrspc2v φ a d B b d B a d + R b d = a d + S b d
19 4 13 17 18 syl12anc φ a Base I mPwSer R b Base I mPwSer R d c 0 I | c -1 Fin a d + R b d = a d + S b d
20 19 mpteq2dva φ a Base I mPwSer R b Base I mPwSer R d c 0 I | c -1 Fin a d + R b d = d c 0 I | c -1 Fin a d + S b d
21 10 ffnd φ a Base I mPwSer R b Base I mPwSer R a Fn c 0 I | c -1 Fin
22 15 ffnd φ a Base I mPwSer R b Base I mPwSer R b Fn c 0 I | c -1 Fin
23 ovex 0 I V
24 23 rabex c 0 I | c -1 Fin V
25 24 a1i φ a Base I mPwSer R b Base I mPwSer R c 0 I | c -1 Fin V
26 inidm c 0 I | c -1 Fin c 0 I | c -1 Fin = c 0 I | c -1 Fin
27 eqidd φ a Base I mPwSer R b Base I mPwSer R d c 0 I | c -1 Fin a d = a d
28 eqidd φ a Base I mPwSer R b Base I mPwSer R d c 0 I | c -1 Fin b d = b d
29 21 22 25 25 26 27 28 offval φ a Base I mPwSer R b Base I mPwSer R a + R f b = d c 0 I | c -1 Fin a d + R b d
30 21 22 25 25 26 27 28 offval φ a Base I mPwSer R b Base I mPwSer R a + S f b = d c 0 I | c -1 Fin a d + S b d
31 20 29 30 3eqtr4d φ a Base I mPwSer R b Base I mPwSer R a + R f b = a + S f b
32 31 mpoeq3dva φ a Base I mPwSer R , b Base I mPwSer R a + R f b = a Base I mPwSer R , b Base I mPwSer R a + S f b
33 1 2 eqtr3d φ Base R = Base S
34 33 psrbaspropd φ Base I mPwSer R = Base I mPwSer S
35 mpoeq12 Base I mPwSer R = Base I mPwSer S Base I mPwSer R = Base I mPwSer S a Base I mPwSer R , b Base I mPwSer R a + S f b = a Base I mPwSer S , b Base I mPwSer S a + S f b
36 34 34 35 syl2anc φ a Base I mPwSer R , b Base I mPwSer R a + S f b = a Base I mPwSer S , b Base I mPwSer S a + S f b
37 32 36 eqtrd φ a Base I mPwSer R , b Base I mPwSer R a + R f b = a Base I mPwSer S , b Base I mPwSer S a + S f b
38 ofmres f + R Base I mPwSer R × Base I mPwSer R = a Base I mPwSer R , b Base I mPwSer R a + R f b
39 ofmres f + S Base I mPwSer S × Base I mPwSer S = a Base I mPwSer S , b Base I mPwSer S a + S f b
40 37 38 39 3eqtr4g φ f + R Base I mPwSer R × Base I mPwSer R = f + S Base I mPwSer S × Base I mPwSer S
41 eqid + R = + R
42 eqid + I mPwSer R = + I mPwSer R
43 5 8 41 42 psrplusg + I mPwSer R = f + R Base I mPwSer R × Base I mPwSer R
44 eqid I mPwSer S = I mPwSer S
45 eqid Base I mPwSer S = Base I mPwSer S
46 eqid + S = + S
47 eqid + I mPwSer S = + I mPwSer S
48 44 45 46 47 psrplusg + I mPwSer S = f + S Base I mPwSer S × Base I mPwSer S
49 40 43 48 3eqtr4g φ + I mPwSer R = + I mPwSer S