Step |
Hyp |
Ref |
Expression |
1 |
|
psrplusgpropd.b1 |
|
2 |
|
psrplusgpropd.b2 |
|
3 |
|
psrplusgpropd.p |
|
4 |
|
simpl1 |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
simp2 |
|
10 |
5 6 7 8 9
|
psrelbas |
|
11 |
10
|
ffvelrnda |
|
12 |
4 1
|
syl |
|
13 |
11 12
|
eleqtrrd |
|
14 |
|
simp3 |
|
15 |
5 6 7 8 14
|
psrelbas |
|
16 |
15
|
ffvelrnda |
|
17 |
16 12
|
eleqtrrd |
|
18 |
3
|
oveqrspc2v |
|
19 |
4 13 17 18
|
syl12anc |
|
20 |
19
|
mpteq2dva |
|
21 |
10
|
ffnd |
|
22 |
15
|
ffnd |
|
23 |
|
ovex |
|
24 |
23
|
rabex |
|
25 |
24
|
a1i |
|
26 |
|
inidm |
|
27 |
|
eqidd |
|
28 |
|
eqidd |
|
29 |
21 22 25 25 26 27 28
|
offval |
|
30 |
21 22 25 25 26 27 28
|
offval |
|
31 |
20 29 30
|
3eqtr4d |
|
32 |
31
|
mpoeq3dva |
|
33 |
1 2
|
eqtr3d |
|
34 |
33
|
psrbaspropd |
|
35 |
|
mpoeq12 |
|
36 |
34 34 35
|
syl2anc |
|
37 |
32 36
|
eqtrd |
|
38 |
|
ofmres |
|
39 |
|
ofmres |
|
40 |
37 38 39
|
3eqtr4g |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
5 8 41 42
|
psrplusg |
|
44 |
|
eqid |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
|
eqid |
|
48 |
44 45 46 47
|
psrplusg |
|
49 |
40 43 48
|
3eqtr4g |
|