Step |
Hyp |
Ref |
Expression |
1 |
|
psrring.s |
|
2 |
|
psrring.i |
|
3 |
|
psrring.r |
|
4 |
|
psr1cl.d |
|
5 |
|
psr1cl.z |
|
6 |
|
psr1cl.o |
|
7 |
|
psr1cl.u |
|
8 |
|
psr1cl.b |
|
9 |
|
psrlidm.t |
|
10 |
|
psrlidm.x |
|
11 |
|
eqid |
|
12 |
1 2 3 4 5 6 7 8
|
psr1cl |
|
13 |
1 8 9 3 10 12
|
psrmulcl |
|
14 |
1 11 4 8 13
|
psrelbas |
|
15 |
14
|
ffnd |
|
16 |
1 11 4 8 10
|
psrelbas |
|
17 |
16
|
ffnd |
|
18 |
|
eqid |
|
19 |
10
|
adantr |
|
20 |
12
|
adantr |
|
21 |
|
simpr |
|
22 |
1 8 18 9 4 19 20 21
|
psrmulval |
|
23 |
|
breq1 |
|
24 |
2
|
adantr |
|
25 |
4
|
psrbagf |
|
26 |
25
|
adantl |
|
27 |
|
nn0re |
|
28 |
27
|
leidd |
|
29 |
28
|
adantl |
|
30 |
24 26 29
|
caofref |
|
31 |
23 21 30
|
elrabd |
|
32 |
31
|
snssd |
|
33 |
32
|
resmptd |
|
34 |
33
|
oveq2d |
|
35 |
|
ringcmn |
|
36 |
3 35
|
syl |
|
37 |
36
|
adantr |
|
38 |
|
ovex |
|
39 |
4 38
|
rab2ex |
|
40 |
39
|
a1i |
|
41 |
3
|
ad2antrr |
|
42 |
16
|
ad2antrr |
|
43 |
|
simpr |
|
44 |
|
breq1 |
|
45 |
44
|
elrab |
|
46 |
43 45
|
sylib |
|
47 |
46
|
simpld |
|
48 |
42 47
|
ffvelrnd |
|
49 |
1 11 4 8 20
|
psrelbas |
|
50 |
49
|
adantr |
|
51 |
21
|
adantr |
|
52 |
4
|
psrbagf |
|
53 |
47 52
|
syl |
|
54 |
46
|
simprd |
|
55 |
4
|
psrbagcon |
|
56 |
51 53 54 55
|
syl3anc |
|
57 |
56
|
simpld |
|
58 |
50 57
|
ffvelrnd |
|
59 |
11 18
|
ringcl |
|
60 |
41 48 58 59
|
syl3anc |
|
61 |
60
|
fmpttd |
|
62 |
|
eldifi |
|
63 |
62 57
|
sylan2 |
|
64 |
|
eqeq1 |
|
65 |
64
|
ifbid |
|
66 |
6
|
fvexi |
|
67 |
5
|
fvexi |
|
68 |
66 67
|
ifex |
|
69 |
65 7 68
|
fvmpt |
|
70 |
63 69
|
syl |
|
71 |
|
eldifsni |
|
72 |
71
|
adantl |
|
73 |
72
|
necomd |
|
74 |
24
|
adantr |
|
75 |
|
nn0sscn |
|
76 |
|
fss |
|
77 |
26 75 76
|
sylancl |
|
78 |
77
|
adantr |
|
79 |
|
fss |
|
80 |
53 75 79
|
sylancl |
|
81 |
|
ofsubeq0 |
|
82 |
74 78 80 81
|
syl3anc |
|
83 |
62 82
|
sylan2 |
|
84 |
83
|
necon3bbid |
|
85 |
73 84
|
mpbird |
|
86 |
85
|
iffalsed |
|
87 |
70 86
|
eqtrd |
|
88 |
87
|
oveq2d |
|
89 |
11 18 5
|
ringrz |
|
90 |
41 48 89
|
syl2anc |
|
91 |
62 90
|
sylan2 |
|
92 |
88 91
|
eqtrd |
|
93 |
92 40
|
suppss2 |
|
94 |
40
|
mptexd |
|
95 |
|
funmpt |
|
96 |
95
|
a1i |
|
97 |
67
|
a1i |
|
98 |
|
snfi |
|
99 |
98
|
a1i |
|
100 |
|
suppssfifsupp |
|
101 |
94 96 97 99 93 100
|
syl32anc |
|
102 |
11 5 37 40 61 93 101
|
gsumres |
|
103 |
3
|
adantr |
|
104 |
|
ringmnd |
|
105 |
103 104
|
syl |
|
106 |
|
eqid |
|
107 |
|
ofsubeq0 |
|
108 |
24 77 77 107
|
syl3anc |
|
109 |
106 108
|
mpbiri |
|
110 |
109
|
fveq2d |
|
111 |
|
fconstmpt |
|
112 |
4
|
fczpsrbag |
|
113 |
2 112
|
syl |
|
114 |
111 113
|
eqeltrid |
|
115 |
114
|
adantr |
|
116 |
|
iftrue |
|
117 |
116 7 66
|
fvmpt |
|
118 |
115 117
|
syl |
|
119 |
110 118
|
eqtrd |
|
120 |
119
|
oveq2d |
|
121 |
16
|
ffvelrnda |
|
122 |
11 18 6
|
ringridm |
|
123 |
103 121 122
|
syl2anc |
|
124 |
120 123
|
eqtrd |
|
125 |
124 121
|
eqeltrd |
|
126 |
|
fveq2 |
|
127 |
|
oveq2 |
|
128 |
127
|
fveq2d |
|
129 |
126 128
|
oveq12d |
|
130 |
11 129
|
gsumsn |
|
131 |
105 21 125 130
|
syl3anc |
|
132 |
34 102 131
|
3eqtr3d |
|
133 |
22 132 124
|
3eqtrd |
|
134 |
15 17 133
|
eqfnfvd |
|