| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrring.s |
|
| 2 |
|
psrring.i |
|
| 3 |
|
psrring.r |
|
| 4 |
|
eqidd |
|
| 5 |
|
eqidd |
|
| 6 |
|
eqidd |
|
| 7 |
|
ringgrp |
|
| 8 |
3 7
|
syl |
|
| 9 |
1 2 8
|
psrgrp |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
3
|
3ad2ant1 |
|
| 13 |
|
simp2 |
|
| 14 |
|
simp3 |
|
| 15 |
1 10 11 12 13 14
|
psrmulcl |
|
| 16 |
2
|
adantr |
|
| 17 |
3
|
adantr |
|
| 18 |
|
eqid |
|
| 19 |
|
simpr1 |
|
| 20 |
|
simpr2 |
|
| 21 |
|
simpr3 |
|
| 22 |
1 16 17 18 11 10 19 20 21
|
psrass1 |
|
| 23 |
|
eqid |
|
| 24 |
1 16 17 18 11 10 19 20 21 23
|
psrdi |
|
| 25 |
1 16 17 18 11 10 19 20 21 23
|
psrdir |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
1 2 3 18 26 27 28 10
|
psr1cl |
|
| 30 |
2
|
adantr |
|
| 31 |
3
|
adantr |
|
| 32 |
|
simpr |
|
| 33 |
1 30 31 18 26 27 28 10 11 32
|
psrlidm |
|
| 34 |
1 30 31 18 26 27 28 10 11 32
|
psrridm |
|
| 35 |
4 5 6 9 15 22 24 25 29 33 34
|
isringd |
|