Step |
Hyp |
Ref |
Expression |
1 |
|
psrval.s |
|
2 |
|
psrval.k |
|
3 |
|
psrval.a |
|
4 |
|
psrval.m |
|
5 |
|
psrval.o |
|
6 |
|
psrval.d |
|
7 |
|
psrval.b |
|
8 |
|
psrval.p |
|
9 |
|
psrval.t |
|
10 |
|
psrval.v |
|
11 |
|
psrval.j |
|
12 |
|
psrval.i |
|
13 |
|
psrval.r |
|
14 |
|
df-psr |
|
15 |
14
|
a1i |
|
16 |
|
simprl |
|
17 |
16
|
oveq2d |
|
18 |
|
rabeq |
|
19 |
17 18
|
syl |
|
20 |
19 6
|
eqtr4di |
|
21 |
20
|
csbeq1d |
|
22 |
|
ovex |
|
23 |
22
|
rabex |
|
24 |
20 23
|
eqeltrrdi |
|
25 |
|
simplrr |
|
26 |
25
|
fveq2d |
|
27 |
26 2
|
eqtr4di |
|
28 |
|
simpr |
|
29 |
27 28
|
oveq12d |
|
30 |
7
|
ad2antrr |
|
31 |
29 30
|
eqtr4d |
|
32 |
31
|
csbeq1d |
|
33 |
|
ovex |
|
34 |
31 33
|
eqeltrrdi |
|
35 |
|
simpr |
|
36 |
35
|
opeq2d |
|
37 |
25
|
adantr |
|
38 |
37
|
fveq2d |
|
39 |
38 3
|
eqtr4di |
|
40 |
|
ofeq |
|
41 |
39 40
|
syl |
|
42 |
35 35
|
xpeq12d |
|
43 |
41 42
|
reseq12d |
|
44 |
43 8
|
eqtr4di |
|
45 |
44
|
opeq2d |
|
46 |
28
|
adantr |
|
47 |
|
rabeq |
|
48 |
46 47
|
syl |
|
49 |
37
|
fveq2d |
|
50 |
49 4
|
eqtr4di |
|
51 |
50
|
oveqd |
|
52 |
48 51
|
mpteq12dv |
|
53 |
37 52
|
oveq12d |
|
54 |
46 53
|
mpteq12dv |
|
55 |
35 35 54
|
mpoeq123dv |
|
56 |
55 9
|
eqtr4di |
|
57 |
56
|
opeq2d |
|
58 |
36 45 57
|
tpeq123d |
|
59 |
37
|
opeq2d |
|
60 |
27
|
adantr |
|
61 |
|
ofeq |
|
62 |
50 61
|
syl |
|
63 |
46
|
xpeq1d |
|
64 |
|
eqidd |
|
65 |
62 63 64
|
oveq123d |
|
66 |
60 35 65
|
mpoeq123dv |
|
67 |
66 10
|
eqtr4di |
|
68 |
67
|
opeq2d |
|
69 |
37
|
fveq2d |
|
70 |
69 5
|
eqtr4di |
|
71 |
70
|
sneqd |
|
72 |
46 71
|
xpeq12d |
|
73 |
72
|
fveq2d |
|
74 |
11
|
ad3antrrr |
|
75 |
73 74
|
eqtr4d |
|
76 |
75
|
opeq2d |
|
77 |
59 68 76
|
tpeq123d |
|
78 |
58 77
|
uneq12d |
|
79 |
34 78
|
csbied |
|
80 |
32 79
|
eqtrd |
|
81 |
24 80
|
csbied |
|
82 |
21 81
|
eqtrd |
|
83 |
12
|
elexd |
|
84 |
13
|
elexd |
|
85 |
|
tpex |
|
86 |
|
tpex |
|
87 |
85 86
|
unex |
|
88 |
87
|
a1i |
|
89 |
15 82 83 84 88
|
ovmpod |
|
90 |
1 89
|
eqtrid |
|