Metamath Proof Explorer


Theorem psrvalstr

Description: The multivariate power series structure is a function. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Assertion psrvalstr Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx R ndx · ˙ TopSet ndx J Struct 1 9

Proof

Step Hyp Ref Expression
1 eqid Base ndx B + ndx + ˙ ndx × ˙ = Base ndx B + ndx + ˙ ndx × ˙
2 1 rngstr Base ndx B + ndx + ˙ ndx × ˙ Struct 1 3
3 5nn 5
4 scandx Scalar ndx = 5
5 5lt6 5 < 6
6 6nn 6
7 vscandx ndx = 6
8 6lt9 6 < 9
9 9nn 9
10 tsetndx TopSet ndx = 9
11 3 4 5 6 7 8 9 10 strle3 Scalar ndx R ndx · ˙ TopSet ndx J Struct 5 9
12 3lt5 3 < 5
13 2 11 12 strleun Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx R ndx · ˙ TopSet ndx J Struct 1 9