Metamath Proof Explorer


Theorem psrvsca

Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses psrvsca.s S = I mPwSer R
psrvsca.n ˙ = S
psrvsca.k K = Base R
psrvsca.b B = Base S
psrvsca.m · ˙ = R
psrvsca.d D = h 0 I | h -1 Fin
psrvsca.x φ X K
psrvsca.y φ F B
Assertion psrvsca φ X ˙ F = D × X · ˙ f F

Proof

Step Hyp Ref Expression
1 psrvsca.s S = I mPwSer R
2 psrvsca.n ˙ = S
3 psrvsca.k K = Base R
4 psrvsca.b B = Base S
5 psrvsca.m · ˙ = R
6 psrvsca.d D = h 0 I | h -1 Fin
7 psrvsca.x φ X K
8 psrvsca.y φ F B
9 sneq x = X x = X
10 9 xpeq2d x = X D × x = D × X
11 10 oveq1d x = X D × x · ˙ f f = D × X · ˙ f f
12 oveq2 f = F D × X · ˙ f f = D × X · ˙ f F
13 1 2 3 4 5 6 psrvscafval ˙ = x K , f B D × x · ˙ f f
14 ovex D × X · ˙ f F V
15 11 12 13 14 ovmpo X K F B X ˙ F = D × X · ˙ f F
16 7 8 15 syl2anc φ X ˙ F = D × X · ˙ f F